To help understand mechanisms of vertebrate genome evolution, we have compared zebrafish and tetrapod gene maps. It has been suggested that translocations are fixed more frequently than inversions in mammals. Gene maps showed that blocks of conserved syntenies between zebrafish and humans were large, but gene orders were frequently inverted and transposed. This shows that intrachromosomal rearrangements have been fixed more frequently than translocations. Duplicated chromosome segments suggest that a genome duplication occurred in ray-fin phylogeny, and comparative studies suggest that this event happened deep in the ancestry of teleost fish. Consideration of duplicate chromosome segments shows that at least 20% of duplicated gene pairs may be retained from this event. Despite genome duplication, zebrafish and humans have about the same number of chromosomes, and zebrafish chromosomes are mosaically orthologous to several human chromosomes. Is this because of an excess of chromosome fissions in the human lineage or an excess of chromosome fusions in the zebrafish lineage? Comparative analysis suggests that an excess of chromosome fissions in the tetrapod lineage may account for chromosome numbers and provides histories for several human chromosomes.
Genetic screens in zebrafish (Danio rerio) have identified mutations that define the roles of hundreds of essential vertebrate genes. Genetic maps can link mutant phenotype with gene sequence by providing candidate genes for mutations and polymorphic genetic markers useful in positional cloning projects. Here we report a zebrafish genetic map comprising 4073 polymorphic markers, with more than twice the number of coding sequences localized in previously reported zebrafish genetic maps. We use this map in comparative studies to identify numerous regions of synteny conserved among the genomes of zebrafish, Tetraodon, and human. In addition, we use our map to analyze gene duplication in the zebrafish and Tetraodon genomes. Current evidence suggests that a whole-genome duplication occurred in the teleost lineage after it split from the tetrapod lineage, and that only a subset of the duplicates have been retained in modern teleost genomes. It has been proposed that differential retention of duplicate genes may have facilitated the isolation of nascent species formed during the vast radiation of teleosts. We find that different duplicated genes have been retained in zebrafish and Tetraodon, although similar numbers of duplicates remain in both genomes. Finally, we use comparative mapping data to address the proposal that the common ancestor of vertebrates had a genome consisting of 12 chromosomes. In a three-way comparison between the genomes of zebrafish, Tetraodon, and human, our analysis delineates the gene content for 11 of these 12 proposed ancestral chromosomes.
RNA interference in mammalian cells is actively used to conduct genetic screens, to identify and to validate targets, and to elucidate regulators and modifiers of cellular pathways. To ensure the specificity and efficacy of the active 21mer siRNA molecules, it is pertinent to develop a strategy for their rational design. Here we show that most functional siRNAs have characteristic sequence features. We tested 601 siRNAs targeting one exogenous and three endogenous genes. The efficacy of the siRNAs was determined at the protein level. Using a decision tree algorithm in combination with information analysis, our analyses revealed four sets of rules with a mean knockdown efficacy ranging from 60% to 73%. (To distinguish between percentages used to describe the quality of an siRNA and the percentages used to describe parts of data sets we underlined the former throughout this paper.) The best rule comprises an A/U at positions 10 and 19, a G/C at position 1, and more than three A/Us between positions 13 and 19, in the sense strand of the siRNA sequence. Using these rules, there is a 99.9% chance of designing an effective siRNA in a set of three with more than 50% knockdown efficiency in a biological readout.
Large-scale genetic screens in zebrafish have identified thousands of mutations in hundreds of essential genes. The genetic mapping of these mutations is necessary to link DNA sequences to the gene functions defined by mutant phenotypes. Here, we report two advances that will accelerate the mapping of zebrafish mutations: (1) The construction of a first generation single nucleotide polymorphism (SNP) map of the zebrafish genome comprising 2035 SNPs and 178 small insertions/deletions, and (2) the development of a method for mapping mutations in which hundreds of SNPs can be scored in parallel with an oligonucleotide microarray. We have demonstrated the utility of the microarray technique in crosses with haploid and diploid embryos by mapping two known mutations to their previously identified locations. We have also used this approach to localize four previously unmapped mutations. We expect that mapping with SNPs and oligonucleotide microarrays will accelerate the molecular analysis of zebrafish mutations
Nodal-related signals comprise a subclass of the transforming growth factor-beta (TGF-beta) superfamily and regulate key events in vertebrate embryogenesis, including mesoderm formation, establishment of left-right asymmetry and neural patterning [1-8]. Nodal ligands are thought to act with EGF-CFC protein co-factors to activate activin type I and II or related receptors, which phosphorylate Smad2 and trigger nuclear translocation of a Smad2/4 complex [8-12]. The winged-helix transcription factor forkhead activin signal transducer-1 (Fast-1) acts as a co-factor for Smad2 [12-20]. Xenopus Fast-1 is thought to function as a transcriptional effector of Nodal signals during mesoderm formation [17], but no mutations in the Fast-1 gene have been identified. We report the identification of the zebrafish fast1 gene and show that it is disrupted in schmalspur (sur) mutants, which have defects in the development of dorsal midline cell types and establishment of left-right asymmetry [21-25]. We find that prechordal plate and notochord are strongly reduced in maternal-zygotic sur mutants, whereas other mesendodermal structures are present - a less severe phenotype than that caused by complete loss of Nodal signaling. These results show that fast1 is required for development of dorsal axial structures and left-right asymmetry, and suggest that Nodal signals act through Fast1-dependent and independent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.