Guillery et al. (109) argued that these retinorecipient cells are an extension of the lateral geniculate nucleus and called them the "geniculate wing." Since these cells receive inputs from the retina (15, 17, 169, 188, 219) and project to the cortex (1?,161,169,1'79), it seems proper to consider them part of the lateral geniculate nucleus. We therefore adopt the terminology of Guillery et al. (109) and refer to them as the geniculate wing in this review.
A superconducting chip containing a regular array of flux qubits, tunable interqubit inductive couplers, an XY-addressable readout system, on-chip programmable magnetic memory, and a sparse network of analog control lines has been studied. The architecture of the chip and the infrastructure used to control it were designed to facilitate the implementation of an adiabatic quantum optimization algorithm. The performance of an eight-qubit unit cell on this chip has been characterized by measuring its success in solving a large set of random Ising spin glass problem instances as a function of temperature. The experimental data are consistent with the predictions of a quantum mechanical model of an eight-qubit system coupled to a thermal environment. These results highlight many of the key practical challenges that we have overcome and those that lie ahead in the quest to realize a functional large scale adiabatic quantum information processor.
Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.
The visual receptive fields of 213 cells in the lateral suprasylvian visual cortex (LS, or Clare-Bishop area) were studied in cats anesthetized with nitrous oxide. Eighty-one percent of the cells were directionally selective. They responded poorly to stationary stimuli flashed on or off, but gave a directionally selective response to stimuli moving through the receptive field. Most of these had a single preferred direction and an opposite null direction. They typically responded to a range of directions of stimulus movement from 45 to 90 degrees to either side of the preferred direction. Small stimuli (1-2 degrees or smaller) typically were effective and 87% of the directionally selective cells showed spatial summation. About 32% had inhibitory mechanisms which decreased the response of the cell if the stimulus exceeded a maximum size. There was little or no evidence that LS area cells were orientation selective or sensitive to variations in stimulus shape independent of size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.