Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed.
Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up- and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs.
BackgroundEnvironmental stress puts organisms at risk and requires specific stress-tailored responses to maximize survival. Long-term exposure to stress necessitates a global reprogramming of the cellular activities at different levels of gene expression.ResultsHere, we use ribosome profiling and RNA sequencing to globally profile the adaptive response of Arabidopsis thaliana to prolonged heat stress. To adapt to long heat exposure, the expression of many genes is modulated in a coordinated manner at a transcriptional and translational level. However, a significant group of genes opposes this trend and shows mainly translational regulation. Different secondary structure elements are likely candidates to play a role in regulating translation of those genes.ConclusionsOur data also uncover on how the subunit stoichiometry of multimeric protein complexes in plastids is maintained upon heat exposure.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0915-0) contains supplementary material, which is available to authorized users.
Multicellular tumor spheroids (MCTS) are valuable in vitro tumor models frequently used to evaluate the penetration and efficacy of therapeutics. In this study, we evaluated potential differences in epigenetic markers, i.e. histone post-translational modifications (PTMs), in the layers of the HCT116 colon carcinoma MCTS. Cells were grown in agarose-coated 96 well plates, forming reproducible 1mm diameter MCTS. The MCTS were fractionated into three radially concentric portions, generating samples containing cells from the core, the mid and the external layers. Using mass spectrometry (MS) based proteomics and EpiProfile, we quantified hundreds of histone peptides in different modified forms; by combining the results of all experiments we quantified the abundance of 258 differently modified peptides, finding significant differences in their relative abundance across layers. Among these differences, we detected higher amounts of the repressive mark H3K27me3 in the external layers as compared to the core. We then evaluated the epigenetic response of MCTS following UNC1999 treatment, a drug targeting the enzymes that catalyze H3K27me3, namely the polycomb repressive complex 2 (PRC2) subunits enhancer of zeste 1 (EZH1) and enhancer of zeste 2 (EZH2). UNC1999 treatment resulted in significant differences in MCTS diameter under drug treatment of varying duration. Using matrix-assisted laser desorption/ionization (MALDI) imaging we determined that the drug penetrates the entire MCTS. Proteomic analysis revealed a decrease in abundance of H3K27me3 as compared to untreated sample, as expected. Interestingly, we observed a comparable growth curve for MCTS under constant drug treatment over 13 days with those treated for only four days at the beginning of their growth. We thus demonstrate that MS based proteomics can define significant differences in histone PTM patterns in sub-millimetric layers of 3D cultures. Moreover, we show that our model is suitable for monitoring drug localization and regulation of histone PTMs after drug treatment.
Rationale Proteomic analysis of single multicellular spheroids has not been previously reported. As three-dimensional cell cultures are an increasingly popular model system for biological research, there is interest in obtaining proteomic profiles of these samples. We investigated the proteome of single HCT 116 multicellular spheroids using protocols optimized for small sample sizes. Methods Six biological replicates were analyzed via microscopy for size. Total protein content was assessed via the bicinchoninic acid assay (BCA assay). Five separate biological replicate spheroids were analyzed via mass spectrometry in technical duplicate. An ultra-performance liquid chromatography (UPLC) system coupled with an LTQ Orbitrap Velos was used for peptide separation, analysis, and identification. Results The average diameter of six replicate HCT 116 spheroids was 940 ± 30 μm and the average total protein amount was determined to be 39 ± 4 μg. At least 1300 protein groups were identified in each single LC-MS/MS run with ten percent of the material from single spheroid loaded. Database search results showed variation between spheroid protein group identifications. Pearson correlations show that the disparity in identifications is due to random variations in spectra and protocol. Conclusions We detected more than 1350 protein groups in each replicate HCT 116 spheroid. While some variation was detected between replicates, differences in the number of protein groups identified were determined to be the result of random variations in mass spectra acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.