Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes.
The fungus Candida albicans is often a benign member of the mucosal flora; however, it commonly causes mucosal disease with substantial morbidity and in vulnerable patients it causes life-threatening bloodstream infections. A striking feature of its biology is its ability to grow in yeast, pseudohyphal and hyphal forms. The hyphal form has an important role in causing disease by invading epithelial cells and causing tissue damage. This Review describes our current understanding of the network of signal transduction pathways that monitors environmental cues to activate a programme of hypha-specific gene transcription, and the molecular processes that drive the highly polarized growth of hyphae.
Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, in immunocompromised patients, blood-stream infections often cause death, despite the use of anti-fungal therapies. The recent completion of the C. albicans genome sequence, the availability of whole-genome microarrays and the development of tools for rapid molecular-genetic manipulations of the C. albicans genome are generating an explosion of information about the intriguing biology of this pathogen and about its mechanisms of virulence. They also reveal the extent of similarities and differences between C. albicans and its benign relative, Saccharomyces cerevisiae.
A central technique used to investigate the role of a Candida albicans gene is to study the phenotype of a cell in which both copies of the gene have been deleted. To date, such investigations can only be undertaken if the gene is not essential. We describe the use of the Candida albicans MET3 promoter to express conditionally an essential gene, so that the consequences of depletion of the gene product may be investigated. The effects of environmental conditions on its expression were investigated, using GFP as a reporter gene. The promoter showed an ≈85‐fold range of expression, according to the presence or absence of either methionine or cysteine in concentrations in excess of 1 mM. In the presence of either amino acid, expression was reduced to levels that were close to background. We used URA3 as a model to demonstrate that the MET3 promoter could control the expression of an essential gene, provided that a mixture of both methionine and cysteine was used to repress the promoter. We describe an expression vector that may be used to express any gene under the control of the MET3 promoter and a vector that may be used to disrupt a gene and simultaneously place an intact copy under the control of the MET3 promoter. During the course of these experiments, we discovered that directed integration into the RP10 locus gives a high frequency of transformation, providing a means to solve a long‐standing problem in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.