A study was conducted to examine the influence of hydraulic retention time (HRT) and solid retention time (SRT) on the removal of tetracycline in the activated sludge processes. Two lab-scale sequencing batch reactors (SBRs) were operated to simulate the activated sludge process. One SBR was spiked with 250 microg/L tetracycline, while the other SBR was evaluated at tetracycline concentrations found in the influent of the wastewater treatment plant (WWTP) where the activated sludge was obtained. The concentrations of tetracyclines in the influent of the WWTP ranged from 0.1 to 0.6 microg/L. Three different operating conditions were applied during the study (phase 1-HRT: 24 h and SRT: 10 days; phase 2-HRT: 7.4 h and SRT: 10 days; and phase 3-HRT: 7.4 h and SRT: 3 days). The removal efficiency of tetracycline in phase 3 (78.4 +/- 7.1%) was significantly lower than that observed in phase 1 (86.4 +/- 8.7%) and phase 2 (85.1 +/- 5.4%) at the 95% confidence level. The reduction of SRT in phase 3 while maintaining a constant HRT decreased tetracycline removal efficiency. Sorption kinetics reached equilibrium within 24 h. Batch equilibrium experiments yielded an adsorption coefficient (Kads) of 8400 +/- 500 mL/g and a desorption coefficient (Kdes) of 22 600 +/- 2200 mL/g. No evidence of biodegradation for tetracycline was observed during the biodegradability test, and sorption was found to be the principal removal mechanism of tetracycline in activated sludge.
The aerobic biodegradability of four antimicrobials (sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim) was investigated in sewage collected at four treatment stages (primary treatment, activated sludge treatment, aerobic nitrification process, and after disinfection of treated sewage) of a municipal sewage treatment plant. The biodegradability tests were conducted in aerated batch reactors by spiking the sewage with 20 microg/L of each of the test substance. Concentration profiles of the assayed compounds were monitored during a 54-d period using liquid chromatography/electrospray ionization/mass spectrometry. Substantial differences in the degradation curves were observed between trimethoprim and the three sulfonamides. The behavior of the latter was characterized by a general biodegradability in the primary and secondary treatment. The highest degradation rates were obtained in the sewage from the activated sludge treatment, where no adaptation phase was observed. On the other hand, the onset of biodegradation in the sewage from the primary treatment was preceded by a lag phase ranging from 10 to 15 d. In contrast, trimethoprim displayed high resistance to microbial degradation in the sewage from the primary treatment and the activated sludge treatment. However, primary degradation of this compound was completed within only 3 d in the sewage from the nitrification process.
A deeper understanding of COVID‐19 on human molecular pathophysiology is urgently needed as a foundation for the discovery of new biomarkers and therapeutic targets. Here we applied mass spectrometry (MS)‐based proteomics to measure serum proteomes of COVID‐19 patients and symptomatic, but PCR‐negative controls, in a time‐resolved manner. In 262 controls and 458 longitudinal samples of 31 patients, hospitalized for COVID‐19, a remarkable 26% of proteins changed significantly. Bioinformatics analyses revealed co‐regulated groups and shared biological functions. Proteins of the innate immune system such as CRP, SAA1, CD14, LBP, and LGALS3BP decreased early in the time course. Regulators of coagulation (APOH, FN1, HRG, KNG1, PLG) and lipid homeostasis (APOA1, APOC1, APOC2, APOC3, PON1) increased over the course of the disease. A global correlation map provides a system‐wide functional association between proteins, biological processes, and clinical chemistry parameters. Importantly, five SARS‐CoV‐2 immunoassays against antibodies revealed excellent correlations with an extensive range of immunoglobulin regions, which were quantified by MS‐based proteomics. The high‐resolution profile of all immunoglobulin regions showed individual‐specific differences and commonalities of potential pathophysiological relevance.
MRZR is the most specific laboratory marker of MS reported to date. If present, MRZR substantially increases the likelihood of the diagnosis of MS. Prospective and systematic studies on the diagnostic and prognostic impact of MRZR testing are highly warranted.
In this work, the identification of two microbial degradation products of the antimicrobial trimethoprim (290 Da) is described. The structural elucidation of the metabolites, which were produced by nitrifying activated sludge bacteria in a small-scale laboratory batch reactor, was accomplished by electrospray ionization-ion trap mass spectrometry conducting consecutive fragmentation steps (MS(n)) combined with H/D-exchange experiments. Although one metabolite corresponded to alpha-hydroxytrimethoprim (306 Da), oxidation of the aromatic ring within the diaminopyrimidine substructure was determined for the second degradate (324 Da). Accurate mass measurements of the two metabolites were provided by a hybrid quadrupole time-of-flight-mass spectrometer operated in MS/MS mode. With absolute mass errors of <5 mDa, it allowed us to confirm the proposed elemental composition for the protonated precursor ions as well as for a series of fragment ions that were previously identified by ion trap mass spectrometry. The study emphasized the potential of nitrifying activated sludge bacteria for breaking down an environmentally relevant pharmaceutical that is otherwise poorly degradable by a bacterial community encountered in conventional activated sludge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.