A study was conducted to examine the influence of hydraulic retention time (HRT) and solid retention time (SRT) on the removal of tetracycline in the activated sludge processes. Two lab-scale sequencing batch reactors (SBRs) were operated to simulate the activated sludge process. One SBR was spiked with 250 microg/L tetracycline, while the other SBR was evaluated at tetracycline concentrations found in the influent of the wastewater treatment plant (WWTP) where the activated sludge was obtained. The concentrations of tetracyclines in the influent of the WWTP ranged from 0.1 to 0.6 microg/L. Three different operating conditions were applied during the study (phase 1-HRT: 24 h and SRT: 10 days; phase 2-HRT: 7.4 h and SRT: 10 days; and phase 3-HRT: 7.4 h and SRT: 3 days). The removal efficiency of tetracycline in phase 3 (78.4 +/- 7.1%) was significantly lower than that observed in phase 1 (86.4 +/- 8.7%) and phase 2 (85.1 +/- 5.4%) at the 95% confidence level. The reduction of SRT in phase 3 while maintaining a constant HRT decreased tetracycline removal efficiency. Sorption kinetics reached equilibrium within 24 h. Batch equilibrium experiments yielded an adsorption coefficient (Kads) of 8400 +/- 500 mL/g and a desorption coefficient (Kdes) of 22 600 +/- 2200 mL/g. No evidence of biodegradation for tetracycline was observed during the biodegradability test, and sorption was found to be the principal removal mechanism of tetracycline in activated sludge.
Wireless access to Internet services will become typical, rather than the exception as it is today. Such a vision presents great demands on mobile networks. Mobile IP represents a simple and scalable global mobility solution but lacks the support for fast handoff control and paging found in cellular telephony networks. In contrast, second-and third-generation cellular systems offer seamless mobility support but are built on complex and costly connection-oriented networking infrastructure that lacks the inherent flexibility, robustness, and scalability found in IP networks. In this article we present Cellular IP, a micro-mobility protocol that provides seamless mobility support in limited geographical areas. Cellular IP, which incorporates a number of important cellular system design principles such as paging in support of passive connectivity, is built on a foundation of IP forwarding, minimal signaling, and soft-state location management. We discuss the design, implementation, and evaluation of a Cellular IP testbed developed at Columbia University over the past several years. Built on a simple, low-cost, plug-and-play systems paradigm, Cellular IP software enables the construction of arbitrary-sized access networks scaling from picocellular to metropolitan area networks. The source code for Cellular IP is freely available from the Web (comet.columbia.edu/cellularip).
The occurrence of antibiotics and other pharmaceuticals in the environment has become an increasing public concern as recent environmental monitoring activities reveal the presence of a broad range of persistent pharmaceuticals in soil and water. Studies show that municipal wastewater treatment plants (WWTPs) are important point sources of antibiotics and antibiotic-resistant bacteria in the environment. The fate of antibiotics and other pharmaceuticals in WWTPs is greatly influenced by the design and operation of treatment systems. Because knowledge on the fate of antibiotics and resistant bacteria in WWTPs is important in estimating their potential impacts on ecology and human health, investigations on occurrence, treatment, and observed effects are reviewed in this article. In addition, human health risk assessment protocols for antibiotic and resistant bacteria are described. Although data on other pharmaceutical compounds are also presented, discussion is focused on antibiotics in the environment because of the potential link to increased emergence of resistance among pathogenic bacteria. The applications of modern analytical methods that facilitate the identification of novel transformation products of pharmaceuticals in environmental matrices are also included to illustrate that the disappearance of the parent pharmaceuticals in WWTPs does not necessarily equate to their complete removal.
Despite recognition of the possible role of biological nitrogen removal (BNR) processes in nitrous oxide (N(2)O) emission, a measured database of N(2)O emissions from these processes at the national scale does not currently exist. This study focused on the quantification of N(2)O emissions at 12 wastewater treatment plants (WWTPs) across the United States using a newly developed U.S. Environmental Protection Agency (USEPA) reviewed protocol. A high degree of variability in field-scale measurements of N(2)O was observed, both across the WWTPs sampled and within each WWTP. Additionally, aerobic zones, which have hitherto not been considered in the USEPA approach of estimating N(2)O emissions, generally contributed more to N(2)O fluxes than anoxic zones from BNR reactors. These results severely qualify the conventional use of a single emission factor to "estimate" N(2)O emissions from BNR processes, solely by virtue of denitrification. Upon subjecting the nationwide data set to multivariate regression data mining, high nitrite, ammonium, and dissolved oxygen concentrations were positively correlated with N(2)O emissions from aerobic zones of activated sludge reactors. On the other hand, high nitrite and dissolved oxygen concentrations were positively correlated with N(2)O emissions from anoxic zones. Based on these results, it can be argued that activated sludge processes that minimize transient or permanent build up of ammonium or nitrite, especially in the presence of dissolved oxygen, are expected to have low N(2)O emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.