Analytical gold electrodes were polished mechanically and electrochemically and the true area of the electrode surface was measured by quantitative oxidative/reductive cycling of the electrode. A roughness factor for each electrode was determined from the ratio of the true area to the geometric area. The roughness is fully described by a combination of microscopic roughness (up to tens of nanometers) and macroscopic roughness (on the order of hundreds of nanometers) terms. The electrodes were then derivatized with a self-assembled monolayer (SAM) of dodecanethiol or a thioalkane azacrown and characterized by impedance spectroscopy. The behavior of the electrodes was modeled with either a Helmholtz or Randles equivalent circuit (depending on the SAM used) in which the capacitance was replaced with a constant phase element. From the model, an effective capacitance and an alpha factor that quantifies the nonideality of the SAM capacitance was obtained. The effective capacitance divided by the roughness factor yields the capacitance per unit true area, which is only a function of microscopic roughness. The relationship between this capacitance and the alpha factor indicates that microscopic roughness predominantly affects the nonideality of the film while macroscopic roughness predominantly affects the magnitude of the film's capacitance. Understanding the contribution of the electrode topography to the magnitude and ideality of the SAM capacitance is important in the construction of SAM-based capacitive sensors because it predicts the importance of electrode-electrode variations.
Hollandite with Cr(III) in both tunnel and framework sites has been prepared hydrothermally from layered manganese oxide precursors.
Precisely engineering the surface chemistry of biomaterials to modulate the adsorption and functionality of biochemical signaling molecules that direct cellular functions is critical in the development of tissue engineered scaffolds. Specifically, this study describes the use of functionalized self-assembled monolayers (SAMs) as a model system to assess the effects of biomaterial surface properties on controlling fibronectin (FN) conformation and concentration as well as keratinocyte function. By systematically analyzing FN adsorption at low and saturated surface densities, we distinguished between SAM dependent effects of FN concentration and conformation on presenting cellular binding domains that direct cellular functions. Quantitative image analyses of immunostained samples showed that modulating the availability of the FN synergy site directly correlated with changes in keratinocyte attachment, spreading, and differentiation, through integrin mediated signaling mechanisms. The results of this study will be used to elucidate design features that can be incorporated into dermal equivalents and percutaneous implants to enhance the rate of reepithelialization and tissue regeneration. Furthermore, these findings indicate that SAM based model systems are a valuable tool for designing and investigating the development of scaffolds that regulate the conformation of extracellular matrix cues and cellular functions that accelerate the rate of tissue regeneration.
Reversible and irreversible photoinduced changes in surface wettability were observed in noncovalently assembled multilayered films. The multilayered films studied were fabricated from a self-assembled monolayer (SAM) consisting of 4-(10-mercaptodecyloxy)pyridine-2,6-dicarboxylic acid on gold, Cu(II) ions complexed to the pyridine head group of the SAM, and either cis- (film 1) or trans- (film 2) stilbene-4,4'-dicarboxylic acid complexed to the Cu(II) ions. Irradiation of film 1 at wavelengths corresponding to the absorption band of the cis-stilbene isomer resulted in an irreversible chemical change and an irreversible increase in wettability, as indicated by surface contact angle and grazing incidence IR measurements. However, no evidence for cis-/trans-photoisomerization was observed. Films 3 and 4, similar to films 1 and 2 in that they consist of an underlying SAM, an intermediate layer consisting of Cu(II) ions, and either cis- or trans-stilbene-4,4'-dicarboxylic acid as the capping ligand, were fabricated with a mixed SAM that contained both 4-(10-mercaptodecyloxy)pyridine-2,6-dicarboxylic acid and 4-tert-butylbenzenethiol. Irradiation of these films at wavelengths corresponding to stilbene isomer absorption bands resulted in reversible cis- to trans- (film 3) and trans- to cis- (film 4) photoisomerization and reversible switching of the surface wettability between a low wetting state (cis-stilbene) and a high wetting state (trans-stilbene). The difference in observed behavior between films 1 and 2 and films 3 and 4 is attributed to the greater surface spacing afforded by the mixed monolayer, which allows greater conformational flexibility and lowers the steric barriers to isomerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.