Threats to engine integrity and life from deposition of environmental particulates that can reach the turbine cooling systems (i.e. <10 micron) have become increasing important within the aero-engine industry, with an increase of flight paths crossing sandy, tropical storm-infested, or polluted airspaces. This has led to studies in the turbomachinery community investigating environmental particulate deposition, largely applying the Discrete Random Walk (DRW) model in CFD simulations of air paths. However, this model was conceived to model droplet dispersion in bulk flow regimes, and therefore has fundamental limitations for deposition studies. One significant limitation is an insensitivity to particle size in the turbulent deposition size regime, where deposition is strongly linked to particle size. This is highlighted within this study through comparisons to published experimental data. Progress made within the wider particulate deposition community has recently led to the development and application of the Continuous Random Walk (CRW) model. This new model provides significantly improved predictions of particle deposition seen experimentally in comparison to the DRW for low temperature pipe flow experiments. However, the CRW model is not without its difficulties. This paper highlights the sensitivities within the CRW model and actions taken to alleviate them where possible. For validation of the model at gas turbine conditions, it should be assessed at engine-representative conditions. These include high-temperature and swirling flows, with thermophoretic and wall-roughness effects. Thermophoresis is a particle force experienced in the negative direction of the temperature gradient, and can strongly effect deposition efficiency from certain flows. Previous validation of the model has centred on low temperatures and pipe flow conditions. Presented here is the validation process which is currently being undertaken to assess the model at gas turbine-relevant conditions. Discussion centres on the underlying principles of the model, how to apply this model appropriately to gas turbine flows and initial assessment for flows seen in secondary air systems. Verification of model assumptions is undertaken, including demonstrating that the effect of boundary layer modelling of anisotropic turbulence is shown to be Reynolds-independent. The integration time step for numerical solution of the non-dimensional Langevin equation is redefined, showing improvement against existing definitions for the available low temperature pipe flow data. The grid dependence of particle deposition in numerical simulations is presented and shown to be more significant for particle conditions in the diffusional deposition regime. Finally, the model is applied to an engine-representative geometry to demonstrate the improvement in sensitivity to particle size that the CRW offers over the DRW for wall-bounded flows.
Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash (VA) therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical high pressure (HP) turbine blade metal temperatures (1163 K to 1293 K) and coolant inlet temperatures (800 K to 900 K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter (FP), which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterize the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase computational fluid dynamics (CFD) model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modeled, and these results are used to help explain the behavior observed.
The presence and accretion of airborne particulates, including ash, sand, dust, and other compounds, in gas turbine engines can adversely affect performance and life of components. Engine experience and experimental work have shown that the thickness of accreted layers of these particulates can become large relative to the engine components on which they form. Numerical simulation to date has largely ignored the effects of resultant changes in the passage geometry due to the build-up of deposited particles. This paper will focus on updating the boundaries of the flow volume geometry by integrating the deposited volume of particulates on the solid surface. The technique is implemented using a novel, coupled deposition-dynamic mesh morphing (DMM) approach to the simulation of particulate-laden flows using Reynolds-averaged Navier–Stokes modeling of the bulk fluid, and Lagrangian-based particulate tracking. On an iterative basis, the particle deposition distributions are used to modify the surface topology by altering the locations of surface nodes, which modifies the mesh. The continuous phase solution and particle tracking are then recalculated. The sensitivity to the modeling time steps employed is explored. An impingement geometry case is used to assess the validity of the technique, and a passage with film cooling holes is interrogated. Differences are seen for all sticking and solid phase motion models employed. At small solid particle sizes, considerable disparity is observed between the particle motion modeling approaches, while the position and level of accretion is altered through the use of a nonisotropic stick and bounce model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.