Abstract. In this study we present a unique 10 year climatology of severe convective storm tracks for a large European area covering Germany, France, Belgium and Luxembourg. For the period 2005–2014, a high-resolution hail potential composite of 1×1 km2 is produced from two-dimensional radar reflectivity and lightning data. Individual hailstorm tracks as well as their physical properties, such as radar reflectivity along the tracks, were reconstructed for the entire time period using the Convective Cell Tracking Algorithm (CCTA2D). A sea-to-continent gradient in the number of hail days per year is found to be present over the whole domain. In addition, the highest number of severe storms is found on the leeward side of low mountain ranges such as the Massif Central in France and the Swabian Jura in southwest Germany. A latitude shift in the hail peak month is observed between the northern part of Germany, where hail occurs most frequently in August, and southern France, where the maximum amount of hail is 2 months earlier. The longest footprints with high reflectivity values occurred on 9 June 2014 and on 28 July 2013 with lengths reaching up to 500 km. Both events were associated with hailstones measuring up to 10 cm diameter, which caused damage in excess of EUR 2 billion.
Abstract. In this study we present a unique 10-year climatology of severe convective storm tracks for a larger European area covering Germany, France, Belgium and Luxembourg. For the period 2005–2014, a high-resolution hail potential composite of 1 by 1 km2 is produced from two-dimensional reflectivity radar data and lightning data. Individual hailstorm tracks as well as their physical properties, such as radar reflectivity along the tracks were reconstructed for the entire time period using the Convective Cell Tracking Algorithm (CCTA2D). A sea-to-continent gradient in the number of hail days is present over the whole domain. In addition, the highest number of severe storms is found on the leeward side of low mountain ranges such as near the Massif Central in France and the Swabian Jura in southwest Germany. A latitude shift in the hail peak month is observed between the northern part of Germany where hail occurs most frequently in August, and southern France where the maximum of hail occurs two months earlier. The spatially most extended footprints with high reflectivity values occurred on 9 June 2014 and on 28 July 2013 with lengths reaching several hundreds of kilometers. Both events implied hailstones measuring up to 10 cm which caused damage in excess of 2 Billions Euros.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.