The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October–March and decreases during May–August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea level pressure in autumn–winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.
At the end of July 2013, a series of severe thunderstorms associated with heavy rainfall, severe wind gusts and large hail affected parts of Germany. On 28 July 2013, two supercells formed almost simultaneously in southern Germany, from which only the more southerly cell produced hailstones up to 10 cm in diameter on a hailswath approximately 120 km long and 15–20 km wide. For the insurance industry, this event, with losses of more than EUR 1 billion, was one of the most expensive natural disasters that has ever occurred in Germany. This article investigates the creation, temporal evolution and effects of the most severe supercell that day by considering and merging radar and satellite data, eyewitness reports, insurance loss data and numerical model studies. Observations of hail at ground level fit very well with a cold‐ring‐shaped structure in the cloud‐top brightness temperature observed by a geostationary satellite imager. Various simulations conducted with the convection‐permitting COnsortium for Small‐scale MOdeling (COSMO) revealed that the track of the hailstorm could be reproduced only when convection was triggered artificially by two warm bubbles that produced single cells that were precursors of the supercell. The model results suggested that the supercell developed near a pre‐existing single cell through low‐level flow convergence in an environment with moderate CAPE but substantial wind shear and storm‐relative helicity, both of which persisted for several hours in the area in which the supercell moved.
Abstract. In this study we present a unique 10 year climatology of severe convective storm tracks for a large European area covering Germany, France, Belgium and Luxembourg. For the period 2005–2014, a high-resolution hail potential composite of 1×1 km2 is produced from two-dimensional radar reflectivity and lightning data. Individual hailstorm tracks as well as their physical properties, such as radar reflectivity along the tracks, were reconstructed for the entire time period using the Convective Cell Tracking Algorithm (CCTA2D). A sea-to-continent gradient in the number of hail days per year is found to be present over the whole domain. In addition, the highest number of severe storms is found on the leeward side of low mountain ranges such as the Massif Central in France and the Swabian Jura in southwest Germany. A latitude shift in the hail peak month is observed between the northern part of Germany, where hail occurs most frequently in August, and southern France, where the maximum amount of hail is 2 months earlier. The longest footprints with high reflectivity values occurred on 9 June 2014 and on 28 July 2013 with lengths reaching up to 500 km. Both events were associated with hailstones measuring up to 10 cm diameter, which caused damage in excess of EUR 2 billion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.