This paper develops and validates a finite-element model to predict both the cured shape and snap-through of asymmetric bistable laminates actuated by piezoelectric macro fiber composites attached to the laminate. To fully describe piezoelectric actuation, the three-dimensional compliance [s(ij)], piezoelectric [d(ij)], and relative permittivity [ε(ij)] matrices were formulated for the macro fiber actuator. The deflection of an actuated isotropic aluminum beam was then modeled and compared with experimental measurements to validate the data. The model was then extended to bistable laminates actuated using macro fiber composites. Model results were compared with experimental measurements of laminate profile (shape) and snap-through voltage. The modeling approach is an important intermediate step toward enabling design of shape-changing structures based on bistable laminates.
Dry fiber tapes have become an alternative to pre-impregnated tapes for automated fiber placement. However, their industrial adoption is inhibited by high upfront research and development cost. To reduce the cost of material selection as part of such an investment, this work presents the application of the analytical hierarchy process (AHP) to material selection with a focus on material processability and manufacturing quality. The selection is based on procurement, material and its performance throughout the manufacturing process, and some laminate quality indicators. Criteria and sub-criteria were identified and implemented into the AHP. This established decision making tool was compared to a more efficient derivative using the chain of interaction method. Two materials, including the selected material, were used to manufacture a small-scale L-section composite component. This demonstrates that the proposed material selection method predicted the more preferable material for manufacturing quality when applied to a complex geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.