Tropical forests are known for their diverse insect fauna. We aimed to determine the effect and relative importance of latitude, elevation and climatic factors affecting species richness and turnover in euglossine bee assemblages along a gradient of 18°lat-itude from tropical rainforests to subtropical, deciduous dry forests in Peru and Bolivia. Sixteen forest sites were sampled during the dry season. Variance partitioning techniques were applied to assess the relative effects of the spatial and environmental variables on species richness and composition. Furthermore, we conducted a Species Indicator Analysis to find characteristic species for the biogeographic zones. There was a significant decrease in species richness towards the subtropical area. The best predictors of species richness were precipitation and its consequences on soil properties as well as temperature seasonality. The abundance of euglossines was most closely related to precipitation and soilpH, but the causal links of abundance to these factors is unclear since soil-pH itself is correlated to a drastic turnover of vegetation structure. Based on the analysis of assemblage composition we propose three different assemblages with a transitional zone at the southern tropical area. The biogeographical distribution of euglossine bees along our study transect appears to be primarily related to climatic conditions and does not reflect the common subdividion of Amazonia into drainage systems.
Amazonian rainforests are among the most species‐rich terrestrial habitats on Earth. The aim of this study was to analyze phylogenetic diversity (PD) patterns of orchid bee assemblages along a latitudinal gradient of 15° from northern Peru to central Bolivia and to relate them to climatic factors and geological history. We expanded an existing phylogeny of orchid bees and analyzed the PD of 15 orchid bee assemblages along a latitudinal gradient using mean pair‐wise phylogenetic distance. The resulting pattern was correlated to climatic factors and elevation. We found a hump‐shaped pattern of PD that peaked in central Peru and decreased towards the equatorial and especially towards the southern, subtropical sites. The decrease in PD towards higher latitudes is a common pattern found in many taxa, which in our case correlates with increasing climatic seasonality. However, the decrease towards the equatorial sites is unusual and may be related to a particular historic event: the northern sites with low PD are situated in the area of the former Lake Pebas, which covered western Amazonia until 3 mya. After the lake disappeared orchid bees mainly belonging to two distantly related species groups apparently colonized the region and diversified, which led to the comparatively low observed PD. In contrast, in central Peru, no in situ radiations were detected, hence the assemblages were composed of species from diverse phylogenetic lineages. Additionally, we identified multiple phylogenetically independent radiations of regionally restricted Euglossa species along the latitudinal gradient that, according to a published, dated phylogeny, diversified roughly 3–1 mya. The hump‐shaped latitudinal pattern of PD of the orchid bees of western Amazonia thus appears to have resulted from a preponderance of early divergent lineages in central Peru and of young radiations from distantly related clades colonizing higher latitudes, possibly triggered by historic climate fluctuations and major geological events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.