Clostridium diffi cile infection (CDI) is a leading cause of hospital-associated gastrointestinal illness and places a high burden on our health-care system. Patients with CDI typically have extended lengths-of-stay in hospitals, and CDI is a frequent cause of large hospital outbreaks of disease. This guideline provides recommendations for the diagnosis and management of patients with CDI as well as for the prevention and control of outbreaks while supplementing previously published guidelines. New molecular diagnostic stool tests will likely replace current enzyme immunoassay tests. We suggest treatment of patients be stratifi ed depending on whether they have mild-to-moderate, severe, or complicated disease. Therapy with metronidazole remains the choice for mildto-moderate disease but may not be adequate for patients with severe or complicated disease. We propose a classifi cation of disease severity to guide therapy that is useful for clinicians. We review current treatment options for patients with recurrent CDI and recommendations for the control and prevention of outbreaks of CDI. Am J Gastroenterol 2013; 108:478-498; doi: 10.1038/ajg.2013 12. In patients in whom oral antibiotics cannot reach a segment of the colon, such as with Hartman's pouch, ileostomy, or colon diversion, vancomycin therapy delivered via enema should be added to treatments above until the patient improves. (Conditional recommendation, low-quality evidence)13. The use of anti-peristaltic agents to control diarrhea from confi rmed or suspected CDI should be limited or avoided, as they may obscure symptoms and precipitate complicated disease. Use of anti-peristaltic agents in the setting of CDI must always be accompanied by medical therapy for CDI. (Strong recommendation, low-quality evidence) Management of severe and complicated CDI14. Supportive care should be delivered to all patients and includes intravenous fl uid resuscitation, electrolyte replacement, and pharmacological venous thromboembolism prophylaxis. Furthermore, in the absence of ileus or signifi cant abdominal distention, oral or enteral feeding should be continued. 17. Vancomycin delivered orally (500 mg four times per day) and per rectum (500 mg in a volume of 500 ml four times a day) plus intravenous metronidazole (500 mg three times a day) is the treatment of choice for patients with complicated CDI with ileus or toxic colon and / or signifi cant abdominal distention. (Strong recommendation, low-quality evidence)18. Surgical consult should be obtained in all patients with complicated CDI. Surgical therapy should be considered in patients with any one of the following attributed to CDI: hypotension requiring vasopressor therapy; clinical signs of sepsis and organ dysfunction (renal and pulmonary); mental status changes; white blood cell count ≥ 50,000 cells / μ l, lactate ≥ 5 mmol / l; or failure to improve on medical therapy after 5 days. (Strong recommendation, moderate-quality evidence) Management of recurrent CDI (RCDI)19. The fi rst recurrence of CDI can be treated ...
Lung infections with Mycobacterium abscessus, a species of multidrug resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF) where they accelerate inflammatory lung damage leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge.Nontuberculous mycobacteria (NTM; referring to mycobacterial species other than M. tuberculosis complex and M. leprae) are ubiquitous environmental organisms that can cause chronic pulmonary infections in susceptible individuals [1,2], particularly those with preexisting inflammatory lung diseases such as cystic fibrosis (CF) [3]. The major NTM infecting CF individuals around the world is Mycobacterium abscessus; a rapidly growing, intrinsically multidrug-resistant species, which can be impossible to treat despite prolonged combination antibiotic therapy [1,[3][4][5], leads to accelerated decline in lung function [6,7], and remains a contraindication to lung transplantation in many centers [3,8,9].Until recently, NTM infections were thought to be independently acquired by individuals through exposure to soil or water [10][11][12]. As expected, previous analyses from the 1990s and 2000s [13][14][15][16] showed that CF patients were infected with unique, genetically diverse strains of M. abscessus, presumably from environmental sources. We used whole genome sequencing at a single UK CF center and identified two clusters of patients (11 individuals in total) infected with identical or near-identical M. abscessus isolates, which social network analysis suggested were acquired within hospital via indirect transmission between patients Phylogenetic analysis of these sequences (using one isolate per patient), supplemented by published genomes from US, France, Brazil, Malaysia, China, and South Korea (Table S1), was performed and analysed in the context of the geographical provenance of isolates ( Figure 1; Figure S1). Within each subspecies, we found multiple examples of deep branches (indicating large genetic differences) between isolates from different individuals, consistent with independent acquisition of unrelated environmental bacteria. However, we also identified multiple clades of near-identical isolates from geographically diverse locations (Figure 1), suggesting widespread transmission of circulating clones within the global CF patient community.To investigate further the relatedness of isolates from different individuals, we a...
The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.
Background Although nontuberculous mycobacteria (NTM) are recognized pathogens in cystic fibrosis (CF), associations with clinical outcomes remain unclear. Methods Microbiological data was obtained from 1216 CF patients over 8 years (481±55 patients/year). Relationships to clinical outcomes were examined in the subset (n=271, 203±23 patients/year) with longitudinal data. Results Five hundred thirty-six of 4862 (11%) acid-fast bacilli (AFB) cultures grew NTM, with Mycobacterium abscessus (n=298, 55.6%) and Mycobacterium avium complex (n=190, 35.4%) most common. Associated bacterial cultures grew Stenotrophomonas or Aspergillus species more often when NTM were isolated (18.2% vs. 8.4% and 13.9% vs. 7.2%, respectively, p<0.01). After controlling for confounders, patients with chronic M. abscessus infection had greater rates of lung function decline than those with no NTM infection (−2.52 vs. −1.64% predicted FEV1/year, p<0.05). Conclusions NTM infection is common in CF and associated with particular pathogens. Chronic M. abscessus infection is associated with increased lung function decline.
The critical nature of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician/advanced practice provider and the microbiologists who provide enormous value to the healthcare team. This document, developed by experts in laboratory and adult and pediatric clinical medicine, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. This document presents a system-based approach rather than specimen-based approach, and includes bloodstream and cardiovascular system infections, central nervous system infections, ocular infections, soft tissue infections of the head and neck, upper and lower respiratory infections, infections of the gastrointestinal tract, intra-abdominal infections, bone and joint infections, urinary tract infections, genital infections, and other skin and soft tissue infections; or into etiologic agent groups, including arthropod-borne infections, viral syndromes, and blood and tissue parasite infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. In addition, the pediatric needs of specimen management are also emphasized. There is intentional redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a guidance for physicians in choosing tests that will aid them to quickly and accurately diagnose infectious diseases in their patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.