Geometry, whether on the atomic or nanoscale, is a key factor for the electronic band structure of materials. Some specific geometries give rise to novel and potentially useful electronic bands. For example, a honeycomb lattice leads to Dirac-type bands where the charge carriers behave as massless particles [1]. Theoretical predictions are triggering the exploration of novel 2D geometries [2–10], such as graphynes, Kagomé and the Lieb lattice. The latter is the 2D analogue of the 3D lattice exhibited by perovskites [2]; it is a square-depleted lattice, which is characterised by a band structure featuring Dirac cones intersected by a flat band. Whereas photonic and cold-atom Lieb lattices have been demonstrated [11–17], an electronic equivalent in 2D is difficult to realize in an existing material. Here, we report an electronic Lieb lattice formed by the surface state electrons of Cu(111) confined by an array of CO molecules positioned with a scanning tunneling microscope (STM). Using scanning tunneling microscopy, spectroscopy and wave-function mapping, we confirm the predicted characteristic electronic structure of the Lieb lattice. The experimental findings are corroborated by muffin-tin and tight-binding calculations. At higher energies, second-order electronic patterns are observed, which are equivalent to a super-Lieb lattice.
On-surface synthesis with molecular precursors has emerged as the de facto route to atomically well-defined graphene nanoribbons (GNRs) with controlled zigzag and armchair edges. On Au(111) and Ag(111) surfaces, the prototypical precursor 10,10′-dibromo-9,9′-bianthryl (DBBA) polymerizes through an Ullmann reaction to form straight GNRs with armchair edges. However, on Cu(111), irrespective of the bianthryl precursor (dibromo-, dichloro-, or halogen-free bianthryl), the Ullmann route is inactive, and instead, identical chiral GNRs are formed. Using atomically resolved noncontact atomic force microscopy (nc-AFM), we studied the growth mechanism in detail. In contrast to the nonplanar BA-derived precursors, planar dibromoperylene (DBP) molecules do form armchair GNRs by Ullmann coupling on Cu(111), as they do on Au(111). These results highlight the role of the substrate, precursor shape, and molecule–molecule interactions as decisive factors in determining the reaction pathway. Our findings establish a new design paradigm for molecular precursors and opens a route to the realization of previously unattainable covalently bonded nanostructures.
The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.
The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an impermeable semimetal to a semiconducting nano-sieve. Nanoporous graphenes are desirable for applications ranging from high-performance semiconductor device channels to atomically-thin molecular sieve membranes, and their performance is highly dependent on the periodicity and reproducibility of pores at the atomic level. Achieving precise nanopore topologies in graphene using top-down lithographic approaches has proven to be challenging due to poor structural control at the atomic level. Alternatively, atomically-precise nanometer-sized pores can be fabricated via lateral fusion of bottom-up synthesized graphene nanoribbons. This technique, however, typically requires an additional high temperature cross-coupling step following the nanoribbon formation that inherently yields poor lateral conjugation, resulting in 2D materials that are weakly connected both mechanically and electronically.Here we demonstrate a novel bottom-up approach for forming fully conjugated nanoporous graphene through a single, mild annealing step following the initial polymer formation. We find emergent interfacelocalized electronic states within the bulk band gap of the graphene nanoribbon that hybridize to yield a dispersive two-dimensional low-energy band of states. We show that this low-energy band can be rationalized in terms of edge states of the constituent single-strand nanoribbons. The localization of these 2D states around pores makes this material particularly attractive for applications requiring electronically sensitive molecular sieves.
We have studied the incommensurate moiré structure of epitaxial graphene grown on iridium(111) by dynamic low-energy electron diffraction [LEED I (V )] and noncontact atomic force microscopy (AFM) with a COterminated tip. Our LEED I (V ) results yield the average positions of all the atoms in the surface unit cell and are in qualitative agreement with the structure obtained from density functional theory. The AFM experiments reveal local variations of the moiré structure: The corrugation varies smoothly over several moiré unit cells between 42 and 56 pm. We attribute these variations to the varying registry between the moiré symmetry sites and the underlying substrate. We also observe isolated outliers, where the moiré top sites can be offset by an additional 10 pm. This study demonstrates that AFM imaging can be used to directly yield the local surface topography with pm accuracy even on incommensurate two-dimensional structures with varying chemical reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.