Using low-temperature scanning tunneling microscopy, we show that monolayer hexagonal boron nitride (h-BN) on Ir(111) acts as ultrathin insulating layer for organic molecules, while simultaneously templating their self-assembly. Tunneling spectroscopy experiments on cobalt phthalocyanine (CoPC) reveal narrow molecular resonances and indicate that the charge state of CoPC is periodically modulated by the h-BN moiré superstructure. Molecules in the second layer show site-selective adsorption behavior, allowing the synthesis of molecular dimers that are spatially ordered and inaccessible by usual chemical means.
Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir (111) surface results in the formation of a moiré superstructure with a periodicity of ∼29Å and a corrugation of ∼0.4Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ∼0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.
Intermolecular features in atomic force microscopy images of organic molecules have been ascribed to intermolecular bonds. A recent theoretical study [P. Hapala et al., Phys. Rev. B 90, 085421 (2014)] showed that these features can also be explained by the flexibility of molecule-terminated tips. We probe this effect by carrying out atomic force microscopy experiments on a model system that contains regions where intermolecular bonds should and should not exist between close-by molecules. Intermolecular features are observed in both regions, demonstrating that intermolecular contrast cannot be directly interpreted as intermolecular bonds.
One of the suggested ways of controlling the electronic properties of graphene is to establish a periodic potential modulation on it, which could be achieved by self-assembly of ordered molecular lattices. We have studied the self-assembly of cobalt phthalocyanines (CoPc) on chemical vapor deposition (CVD) grown graphene transferred onto silicon dioxide (SiO2) and hexagonal boron nitride (h-BN) substrates. Our scanning tunneling microscopy (STM) experiments show that, on both substrates, CoPc forms a square lattice. However, on SiO2, the domain size is limited by the corrugation of graphene, whereas on h-BN, single domain extends over entire terraces of the underlying h-BN. Additionally, scanning tunneling spectroscopy (STS) measurements suggest that CoPc molecules are doped by the substrate and that the level of doping varies from molecule to molecule. This variation is larger on graphene on SiO2 than on h-BN. These results suggest that graphene on h-BN is an ideal substrate for the study of molecular self-assembly toward controlling the electronic properties of graphene by engineered potential landscapes.
The electronic properties of graphene edges have been predicted to depend on their crystallographic orientation. The so-called zigzag (ZZ) edges haven been extensively explored theoretically and proposed for various electronic applications. However, their experimental study remains challenging due to the difficulty in realizing clean ZZ edges without disorder, reconstructions, or the presence of chemical functional groups. Here, we propose the ZZ-terminated, atomically sharp interfaces between graphene and hexagonal boron nitride (BN) as experimentally realizable, chemically stable model systems for graphene ZZ edges. Combining scanning tunneling microscopy and numerical methods, we explore the structure of graphene-BN interfaces and show them to host localized electronic states similar to those on the pristine graphene ZZ edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.