Graphene nanostructures, where quantum confinement opens an energy gap in the band structure, hold promise for future electronic devices. To realize the full potential of these materials, atomic-scale control over the contacts to graphene and the graphene nanostructure forming the active part of the device is required. The contacts should have a high transmission and yet not modify the electronic properties of the active region significantly to maintain the potentially exciting physics offered by the nanoscale honeycomb lattice. Here we show how contacting an atomically well-defined graphene nanoribbon to a metallic lead by a chemical bond via only one atom significantly influences the charge transport through the graphene nanoribbon but does not affect its electronic structure. Specifically, we find that creating well-defined contacts can suppress inelastic transport channels.
On-surface synthesis with molecular precursors has emerged as the de facto route to atomically well-defined graphene nanoribbons (GNRs) with controlled zigzag and armchair edges. On Au(111) and Ag(111) surfaces, the prototypical precursor 10,10′-dibromo-9,9′-bianthryl (DBBA) polymerizes through an Ullmann reaction to form straight GNRs with armchair edges. However, on Cu(111), irrespective of the bianthryl precursor (dibromo-, dichloro-, or halogen-free bianthryl), the Ullmann route is inactive, and instead, identical chiral GNRs are formed. Using atomically resolved noncontact atomic force microscopy (nc-AFM), we studied the growth mechanism in detail. In contrast to the nonplanar BA-derived precursors, planar dibromoperylene (DBP) molecules do form armchair GNRs by Ullmann coupling on Cu(111), as they do on Au(111). These results highlight the role of the substrate, precursor shape, and molecule–molecule interactions as decisive factors in determining the reaction pathway. Our findings establish a new design paradigm for molecular precursors and opens a route to the realization of previously unattainable covalently bonded nanostructures.
How electronic charge is distributed over a molecule determines to a large extent its chemical properties. Here, we demonstrate how the electrostatic force field, originating from the inhomogeneous charge distribution in a molecule, can be measured with submolecular resolution. We exploit the fact that distortions typically observed in high-resolution atomic force microscopy images are for a significant part caused by the electrostatic force acting between charges of the tip and the molecule of interest. By finding a geometrical transformation between two high-resolution AFM images acquired with two different tips, the electrostatic force field or potential over individual molecules and self-assemblies thereof can be reconstructed with submolecular resolution.
Atomic force microscopy (AFM) images of graphene and graphite show contrast with atomic periodicity. However, the contrast patterns vary depending on the atomic termination of the AFM tip apex and the tip-sample distance, hampering the identification of the atomic positions. Here, we report quantitative AFM imaging of epitaxial graphene using inert (carbon-monoxide-terminated) and reactive (iridium-terminated) tips. The atomic image contrast is markedly different with these tip terminations. With a reactive tip, we observe an inversion from attractive to repulsive atomic contrast with decreasing tip-sample distance, while a nonreactive tip only yields repulsive atomic contrast. We are able to identify the atoms with both tips at any tip-sample distance. This is a prerequisite for future structural and chemical analysis of adatoms, defects, and the edges of graphene nanostructures, crucial for understanding nanoscale graphene devices.
Intermolecular features in atomic force microscopy images of organic molecules have been ascribed to intermolecular bonds. A recent theoretical study [P. Hapala et al., Phys. Rev. B 90, 085421 (2014)] showed that these features can also be explained by the flexibility of molecule-terminated tips. We probe this effect by carrying out atomic force microscopy experiments on a model system that contains regions where intermolecular bonds should and should not exist between close-by molecules. Intermolecular features are observed in both regions, demonstrating that intermolecular contrast cannot be directly interpreted as intermolecular bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.