Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health "to a strong degree," 35.3% that weather had "some influence on their health" (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32% of the weather-sensitive subjects reported themselves to be unable to do their regular work because of weather-related symptoms at least once in the previous year, and 22% of them several times. Co-morbidity was significantly higher in weather-sensitive subjects both in Germany and Canada. These results clearly showed the important impact of WS on public health and the economy. These findings prompted us to start studies on the causal factors of weather-related health effects.
In general, measurements of UV radition are related to horizontal surfaces, as in the case of the internationally standardized and applied UV index, for example. In order to obtain more relevant information on UV exposure of humans the new measuring system ASCARATIS (Angle SCAnning RAdiometer for determination of erythemally weighted irradiance on TIlted Surfaces) was developed and built. Three systems of ASCARATIS have been in operation at different locations in Bavaria for 3 years, providing erythemally weighted UV irradiation data for 27 differently inclined surfaces every 2 min. On the basis of these data virtual three-dimensional models of the human body surface consisting of about 20,000 triangles could be created and each of these triangles coloured according to its UV irradiation. This allowed the UV exposure of the human body to be visualized for any kind of body posture and spatial orientation on the basis of real measuring data. The results of the UV measurements on inclined surfaces have shown that measuring UV radiation on horizontal surfaces, as done routinely worldwide, often underestimates the UV exposure of the human skin. Especially at times of the day or year with low solar elevations the UV exposure of parts of the human skin can be many times higher than that of the horizontal surface. Examples of three-dimensional modelling of the human UV irradiation are shown for different times of the day and year, altitudes above sea level, body postures and genders. In these examples the UV "hotspots" can be detected and, among other things, used to inform and educate the public about UV radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.