We present a technique to directly excite Lüttinger liquid collective modes in carbon nanotubes at gigahertz frequencies. By modeling the nanotube as a nano-transmission line with distributed kinetic and magnetic inductance as well as distributed quantum and electrostatic capacitance, we calculate the complex frequency-dependent impedance for a variety of measurement geometries. Exciting voltage waves on the nano-transmission line is equivalent to directly exciting the yet-to-be observed one-dimensional plasmons, the low energy excitation of a Lüttinger liquid. Our technique has already been applied to two-dimensional plasmons and should work well for one-dimensional plasmons. Tubes of length 100 microns must be grown for gigahertz resonance frequencies. Ohmic contact is not necessary with our technique; capacitive contacts can work. Our modeling has applications in potentially Terahertz nanotube transistors and RF nanospintronics.
Using about 600 college students and exploratory and confirmatory factor analysis, three models of personality structure were tested: the Big Five, as measured by the NEO Personality Inventory (P.T. Costa & R. R. McCrae, 1985), and A. Tellegen's (1985) three- and four-dimensional models, as measured by the Multidimensional Personality Questionnaire (A. Tellegen, 1982). Both factor methods indicated considerable support for, but also some divergences from, the models. We concluded that parsimonious personality models are unlikely to meet conventional goodness-of-fit criteria in confirmatory factor analysis, because of the limited simple structure of personality measures and the personality domain itself. Poor fits of a priori models highlighted not only the limited specificity of personality structure theory, but also the limitations of confirmatory factor analysis for testing personality structure models.
Electronic devices based on carbon nanotubes are among the candidates to eventually replace silicon-based devices for logic applications. Before then, however, nanotube-based radiofrequency transistors could become competitive for high-performance analogue components such as low-noise amplifiers and power amplifiers in wireless systems. Single-walled nanotubes are well suited for use in radiofrequency transistors because they demonstrate near-ballistic electron transport and are expected to have high cut-off frequencies. To achieve the best possible performance it is necessary to use dense arrays of semiconducting nanotubes with good alignment between the nanotubes, but techniques that can economically manufacture such arrays are needed to realize this potential. Here we review progress towards nanotube electronics for radiofrequency applications in terms of device physics, circuit design and the manufacturing challenges.
Until recently, the dual roles of mitochondria in ATP production (bioenergetics) and apoptosis (cell life/death decision) were thought to be separate. New evidence points to a more intimate link between these two functions, mediated by the remodeling of the mitochondrial ultra-structure during apoptosis. While most of the key molecular players that regulate this process have been identified (primarily membrane proteins), the exact mechanisms by which they function are not yet understood. Because resistance to apoptosis is a hallmark of cancer, and because ultimately all chemotherapies are believed to result directly or indirectly in induction of apoptosis, a better understanding of the biophysical processes involved may lead to new avenues for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.