Highly stable field emission current densities of more than 6A∕cm2 along with scalable total field emission currents of ∼300μA per 70μm diameter carbon nanotube (CNT)-covered electron emitter dot are reported. Microwave-plasma chemical vapor deposition, along with a novel catalyst sandwich structure and postdepositional radio-frequency (rf) oxygen plasma treatment lead to well-structured vertically aligned CNTs with excellent and scalable emission properties. Scanning electron and transmission electron microscope investigations reveal that postdepositional treatment reduces not only the number but modifies the structure of the CNTs. Well-structured microwave-plasma-grown nanotubes become amorphous during rf oxygen plasma treatment and the measured work functions of CNTs change from 4.6eVto4.0eV before and after treatment, respectively. Our experiments outline a novel fabrication route for structured CNT arrays with improved and scalable field emission characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.