Dwindling fossil fuel resources and concern of climate change resulting from the burning of fossil fuels have led to significant development of renewable energy in many countries. While renewable energy takes many forms, solar and wind resources are being harvested in commercial scale in many parts of the world. Government incentives such as Renewable Energy Certificates and Feed-in Tariffs have contributed to the rapid uptake. In Australia many residential customers have taken up roof-top Photo-Voltaic (PV) systems. These residential PV generations are embedded in the Low Voltage (LV) networks that are not designed to take intermittent, two-way flow of electricity. Utility engineers are faced with the challenge of a legacy electricity distribution network to connect increasing amount of embedded PV generation. This paper focuses on two aspects of the technical limitationsteady state voltage delivery and phase imbalanceand proposes how the technical limitations can be improved by optimizing the existing voltage control schemes, the balancing of loads and generations between the supply phases, and finally the adoption of smart grid methodologies. This prioritised approach provides a cost effective means of addressing the impact of embedded PV generation. The proposed method is verified by computer simulation on a realistic LV distribution network in the state of Victoria, Australia.
Considering power quality problems such as overvoltage and three-phase unbalance caused by high permeability distributed photovoltaic access in low-voltage distribution networks, this paper proposes a comprehensive control scheme using a static var. generator (SVG), electric energy storage (EES), a phase switching device (PSD) and an intelligent terminal controller. The control strategies of transformer overload, bus over/under voltage, anticountercurrent, storage battery state of charge (SOC) maintenance, and three-phase unbalance are studied. The engineering application in the Greenvale low-voltage distribution networks in Australia with high permeability distributed photovoltaics is discussed. The results show that the intelligent terminal controller is able to improve the power quality of low-voltage distribution networks through coordination with EES, SVG and PSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.