Photoluminescence spectroscopy has been used to study single crystalline ZnO samples systematically annealed in inert, Zn-rich and O-rich atmospheres. A striking correlation is observed between the choice of annealing ambient and the position of the deep band emission (DBE) often detected in ZnO. In particular, annealing in O2 results in a DBE at 2.35±0.05eV, whereas annealing in the presence of metallic Zn results in DBE at 2.53±0.05eV. The authors attribute the former band to zinc vacancy (VZn) related defects and the latter to oxygen vacancy (VO) related defects. Additional confirmation for the VO and VZn peak identification comes from the observation that the effect is reversible when O- and Zn-rich annealing conditions are switched. After annealing in the presence of ZnO powder, there is no indication for the VZn- or VO-related bands, but the authors observe a low intensity yellow luminescence band peaking at 2.17eV, probably related to Li, a common impurity in hydrothermally grown ZnO.
A set of bulk ZnO samples implanted with O and Zn at various densities were investigated by photoluminescence. The implantation concentration of O and Zn is varied between 1×1017∕cm3 and 5×1019∕cm3. The samples were thermally treated in an oxygen gas environment after the implantation. The results clearly show the influence of O and Zn implantations on the deep-level emission. By comparing the photoluminescence spectra for the samples with different implantations, we can conclude that the VZn is responsible to the observed deep-level emission. In addition, a novel transition at the emission energy of 3.08eV at 77K appears in the O-implanted sample with 5×1019∕cm3 implantation concentration. The novel emission is tentatively identified as O-antisite OZn.
Bending flexibility, kinking, and buckling characterization of ZnO nanorods/nanowires grown on different substrates by high and low temperature methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.