A series of N1-modified imidazoquinolines were synthesized and screened for Toll-like receptors (TLR) 7 and 8 activities to identify recognition elements that confer high affinity binding and selectivity. These receptors are key targets in the development of immunomodulatory agents that signal the NF-κB mediated transcription of pro-inflammatory chemokines and cytokines. Results are presented showing both TLR7/8 activations are highly correlated to N1-substitution, with TLR8 selectivity achieved through inclusion of an ethyl-, propyl-, or butylamino group at this position. While the structure-activity relationship analysis indicates TLR7 activity is less sensitive to N1-modification, extension of the aminoalkyl chain length to pentyl and -methylbenzyl elicited high affinity TLR7 binding. Cytokine profiles are also reported that show the pure TLR8 agonist [4-amino-2-butyl-1-(2-aminoethyl)-7-methoxycarbonyl-1-imidazo[4,5-]quinoline] induces higher levels of IL-1β, IL-12, and IFNγ when compared with TLR7 selective or mixed TLR7/8 agonists. The results are consistent with previous work suggesting TLR8 agonists are Th1 polarizing and may help promote cell-mediated immunity.
Optochin, a cinchona alkaloid derivative discovered over 100 years ago, possesses highly selective antibacterial activity toward Streptococcus pneumoniae. Pneumococcal disease remains the leading source of bacterial pneumonia and meningitis worldwide. The structure−activity relationships of optochin were examined through modification to both the quinoline and quinuclidine subunits, which led to the identification of analogue 48 with substantially improved activity. Resistance and molecular modeling studies indicate that 48 likely binds to the c-ring of ATP synthase near the conserved glutamate 52 ion-binding site, while mechanistic studies demonstrated that 48 causes cytoplasmic acidification. Initial pharmacokinetic and drug metabolism analyses of optochin and 48 revealed limitations of these quinine analogues, which were rapidly cleared, resulting in poor in vivo exposure through hydroxylation pendants to the quinuclidine and O-dealkylation of the quinoline. Collectively, the results provide a foundation to advance 48 and highlight ATP synthase as a promising target for antibiotic development.
The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of (S)-(−)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (MICs = 0.096-6.2 μM), *
5'-[ N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine (Bio-AMS, 1) possesses selective activity against Mycobacterium tuberculosis ( Mtb) and arrests fatty acid and lipid biosynthesis through inhibition of the Mycobacterium tuberculosis biotin protein ligase ( MtBPL). Mtb develops spontaneous resistance to 1 with a frequency of at least 1 × 10 by overexpression of Rv3406, a type II sulfatase that enzymatically inactivates 1. In an effort to circumvent this resistance mechanism, we describe herein strategic modification of the nucleoside at the 5'-position to prevent enzymatic inactivation. The new analogues retained subnanomolar potency to MtBPL ( K = 0.66-0.97 nM), and 5' R- C-methyl derivative 6 exhibited identical antimycobacterial activity toward: Mtb H37Rv, MtBPL overexpression, and an isogenic Rv3406 overexpression strain (minimum inhibitory concentration, MIC = 1.56 μM). Moreover, 6 was not metabolized by recombinant Rv3406 and resistant mutants to 6 could not be isolated (frequency of resistance <1.4 × 10) demonstrating it successfully overcame Rv3406-mediated resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.