Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non-monotonic size-dependence of the selectivity in cube-shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.
Copper electrodes, prepared by reduction of oxidized metallic copper have been reported to exhibit higher activity for the electrochemical reduction of CO2 and better selectivity towards C2 and C3 (C2+) products than metallic copper that has not been pre-oxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO2 reduction, with particular attention given to the selectivity to C2+ products. All catalysts were tested for CO2 reduction in 0.1 M KHCO3 and 0.1 M CsHCO3 at applied voltages in the range of -0.7 V to -1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C2+ products and only ~3% selectivity to C1 products at -1.0 V vs RHE when CsHCO3 is used as the electrolyte. In contrast, the selectivity to C2+ products decreases to ~56% for the same catalysts tested in KHCO3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C2+ products is attained at an overpotential of -1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO2. Based on recent theoretical studies, a high pH suppresses the formation of C1 relative to C2+ products. At the same time however, a high local CO2 concentration is necessary for the formation of C2+ products.3
Copper oxides have been of considerable interest as electrocatalysts for CO reduction (CO2R) in aqueous electrolytes. However, their role as an active catalyst in reducing the required overpotential and improving the selectivity of reaction compared with that of polycrystalline copper remains controversial. Here, we introduce the use of selected-ion flow tube mass spectrometry, in concert with chronopotentiometry, in situ Raman spectroscopy, and computational modeling, to investigate CO2R on CuO nanoneedles, CuO nanocrystals, and CuO nanoparticles. We show experimentally that the selective formation of gaseous C products (i.e., ethylene) in CO2R is preceded by the reduction of the copper oxide (CuOR) surface to metallic copper. On the basis of density functional theory modeling, CO2R products are not formed as long as CuO is present at the surface because CuOR is kinetically and energetically more favorable than CO2R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.