Unconventional metallic states which do not support well defined single-particle excitations can arise near quantum phase transitions as strong quantum fluctuations of incipient order parameters prevent electrons from forming coherent quasiparticles. Although antiferromagnetic phase transitions occur commonly in correlated metals, understanding the nature of the strange metal realized at the critical point in layered systems has been hampered by a lack of reliable theoretical methods that take into account strong quantum fluctuations. We present a non-perturbative solution to the lowenergy theory for the antiferromagnetic quantum critical metal in two spatial dimensions. Being a strongly coupled theory, it can still be solved reliably in the low-energy limit as quantum fluctuations are organized by a new control parameter that emerges dynamically. We predict the exact critical exponents that govern the universal scaling of physical observables at low temperatures.
We apply the quantum renormalization group to construct a holographic dual for the U(N) vector model for complex bosons defined on a lattice. The bulk geometry becomes dynamical as the hopping amplitudes which determine connectivity of space are promoted to quantum variables. In the large N limit, the full bulk equations of motion for the dynamical hopping fields are numerically solved for finite systems. From finite size scaling, we show that different phases exhibit distinct geometric features in the bulk. In the insulating phase, the space gets fragmented into isolated islands deep inside the bulk, exhibiting ultra-locality. In the superfluid phase, the bulk exhibits a horizon beyond which the geometry becomes non-local. Right at the horizon, the hopping fields decay with a universal power-law in coordinate distance between sites, while they decay in slower power-laws with continuously varying exponents inside the horizon. At the critical point, the bulk exhibits a local geometry whose characteristic length scale diverges asymptotically in the IR limit.Comment: 44+11 pages, many figures, added how to extract critical exponent from bulk (Fig. 13), other minor change
We study the antiferromagnetic quantum critical metal in 3 − ǫ space dimensions by extending the earlier one-loop analysis [Sur and Lee, Phys. Rev. B 91, 125136 (2015)] to higher-loop orders. We show that the ǫ-expansion is not organized by the standard loop expansion, and a two-loop graph becomes as important as one-loop graphs due to an infrared singularity caused by an emergent quasilocality. This qualitatively changes the nature of the infrared (IR) fixed point, and the ǫ-expansion is controlled only after the two-loop effect is taken into account. Furthermore, we show that a ratio between velocities emerges as a small parameter, which suppresses a large class of diagrams. We show that the critical exponents do not receive corrections beyond the linear order in ǫ in the limit that the ratio of velocities vanishes. The ǫ-expansion gives critical exponents which are consistent with the exact solution obtained in 0 < ǫ ≤ 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.