Fruiting body lectins are ubiquitous in higher fungi and characterized by being synthesized in the cytoplasm and up-regulated during sexual development. The function of these lectins is unclear. A lack of phenotype in sexual development upon inactivation of the respective genes argues against a function in this process. We tested a series of characterized fruiting body lectins from different fungi for toxicity towards the nematode Caenorhabditis elegans, the mosquito Aedes aegypti and the amoeba Acanthamoeba castellanii. Most of the fungal lectins were found to be toxic towards at least one of the three target organisms. By altering either the fungal lectin or the glycans of the target organisms, or by including soluble carbohydrate ligands as competitors, we demonstrate that the observed toxicity is dependent on the interaction between the fungal lectins and specific glycans in the target organisms. The toxicity was found to be dose-dependent such that low levels of lectin were no longer toxic but still led to food avoidance by C. elegans. Finally, we show, in an ecologically more relevant scenario, that challenging the vegetative mycelium of Coprinopsis cinerea with the fungal-feeding nematode Aphelenchus avenae induces the expression of the nematotoxic fruiting body lectins CGL1 and CGL2. Based on these findings, we propose that filamentous fungi possess an inducible resistance against predators and parasites mediated by lectins that are specific for glycans of these antagonists.
The insecticidal delta endotoxin of Bacillus thuringiensis was labeled with iodine-125. Brush-border membrane vesicles, prepared from the midgut epithelium of Pieris brassicae larvae, known to be highly susceptible to the toxin, and from a non-target tissue: the small intestine of rat, were examined for binding of '251-toxin. The toxin was bound specifically only to insect vesicles. Its binding to the insect membrane system was competitively inhibited by '271-toxin and non-iodinated toxin, whereas the binding of the 1251-toxin to the mammalian membrane system was not affected by unlabeled toxin. Vesicles of P. brassicae possess two individual bindingsite populations for iodinated toxin with dissociation constants of 46 nM and 490 nM. The Hill coefficients of both sites were approximately 1 and the binding capacities were 0.2 pmol and 30 pmol/mg vesicle protein for the high and the low-affinity sites respectively. The estimation of the dissociation constant for non-iodinated toxin, using a competition experiment, revealed only one binding-site population which possessed a dissociation constant of 235 nM. It is concluded that this is the binding site for the native toxin. This site was sensitive towards treatment with proteases or mixed glycosidases. It is suggested that it is a protein or a glycoprotein.The delta endotoxin of Bacillus thuringiensis is a proteinaceous, crystalline insecticide, toxic to the larval stages of several important pest insects in agriculture and forestry. The crystals are composed of subunits (protoxin) with a molecular mass of about 130 kDa [l -31. The toxic moiety is located on the N-terminal half of the protein [4-61 and has a molecular mass of approximately 60 -68 kDa. The molecular mass of the protoxin and that of the activated toxin vary depending on the strain and on the proteolytic procedure used for the activation. In the case of the strain studied here, activation of the protoxin (136 kDa) by trypsin leads to toxic fragments with molecular masses of 55 kDa and 70 kDa. In vitro the protoxin needs proteolytic activation to exhibit toxicity against insect cell cultures [7, 81. In vivo the protoxin is enzymatically activated within the digestive tract. Furthermore, the toxins of various strains differ in their host spectrum [9, 101. The delta endotoxin destroys the gut epithelia of susceptible insect larvae [ll]; the results of several studies have shown that the permeability of the gut membrane undergoes changes (for review, see [12]).
BackgroundIn Ticino, a canton located south of the Alps in Switzerland, a surveillance programme on Aedes albopictus (Stegomyia albopicta) started in 2000 seeing that the region was considered at high risk of introduction based on the rapid spread of this mosquito in neighbouring Italy.MethodsThe surveillance programme, which is still ongoing, was adapted continuously to handle preventive measures of arrival, dispersal and establishment of this invasive species. The monitoring was based on ovitraps supported by reports from the population. The integrated control measures included removal of breeding sites, larvicide applications with Bacillus thuringiensis israelensis or diflubenzuron and, in some circumstances, adulticide applications with permethrin. These measures involved citizens, municipalities and Civil Protection Units.ResultsAe. albopictus was first observed in 2003 in Ticino. We describe the strategies adopted and their adaptations to the evolving problem since year 2000. The approach used allowed keeping the mosquito densities at tolerable levels and below the threshold of autochthonous Ae. albopictus borne disease transmission. During the surveillance period, new typologies of breeding sites for Ae. albopictus have been discovered.ConclusionsIt was worth tackling the arrival of Ae. albopictus and adopting immediate control measures, followed by regular control measures after its establishment. Early intervention and prevention of the possible spread of the tiger mosquito over the territory avoided facing a crisis situation. This also reduced the difficulty of managing the situation and probably also reduced the overall cost if this had not been put in place.
BackgroundOver the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans.Methodology/Principal FindingsWe identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020–2049 and 2045–2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020–2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045–2074, when Ae. albopictus may invade large new areas.Conclusions/SignificanceSeveral parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.