Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Heritability and polygenic predictionIn the EUR sample, the SNP-based heritability (h 2 SNP ) (that is, the proportion of variance in liability attributable to all measured SNPs)
The relative proportion of additive and non-additive variation for complex traits is important in evolutionary biology, medicine, and agriculture. We address a long-standing controversy and paradox about the contribution of non-additive genetic variation, namely that knowledge about biological pathways and gene networks imply that epistasis is important. Yet empirical data across a range of traits and species imply that most genetic variance is additive. We evaluate the evidence from empirical studies of genetic variance components and find that additive variance typically accounts for over half, and often close to 100%, of the total genetic variance. We present new theoretical results, based upon the distribution of allele frequencies under neutral and other population genetic models, that show why this is the case even if there are nonadditive effects at the level of gene action. We conclude that interactions at the level of genes are not likely to generate much interaction at the level of variance.
We performed the largest genome-wide association study of PD to date, involving the analysis of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases, and 1.4M controls. We identified 90 independent genome-wide significant signals across 78 loci, including 38 independent risk signals in 37 novel loci. These variants explained 26-36% of the heritable risk of PD. Tests of causality within a Mendelian randomization framework identified putatively causal genes for 70 risk signals. Tissue expression enrichment analysis suggested that signatures of PD loci were heavily brain-enriched, consistent with specific neuronal cell types being implicated from single cell expression data. We found significant genetic correlations with brain volumes, smoking status, and educational attainment. In sum, these data provide the most comprehensive understanding of the genetic architecture of PD to date by revealing many additional PD risk loci, providing a biological context for these risk factors, and demonstrating that a considerable genetic component of this disease remains unidentified.
The capacity to accurately predict an individual's phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. Recently, Bayesian methods for generating polygenic predictors have been successfully applied in human genomics but require the individual level data, which are often limited in their access due to privacy or logistical concerns, and are computationally very intensive. This has motivated methodological frameworks that utilise publicly available genome-wide association studies (GWAS) summary data, which now for some traits include results from greater than a million individuals. In this study, we extend the established summary statistics methodological framework to include a class of point-normal mixture prior Bayesian regression models, which have been shown to generate optimal genetic predictions and can perform heritability estimation, variant mapping and estimate the distribution of the genetic effects. In a wide range of simulations and cross-validation using 10 real quantitative traits and 1.1 million variants on 350,000 individuals from the UK Biobank (UKB), we establish that our summary based method, SBayesR, performs similarly to methods that use the individual level data and outperforms other state-of-the-art summary statistics methods in terms of prediction accuracy and heritability estimation at a fraction of the computational resources. We generate polygenic predictors for body mass index and height in two independent data sets and show that by exploiting summary statistics on 1.1 million variants from the largest GWAS meta-analysis (n ≈ 700, 000) that the SBayesR prediction R 2 improved on average across traits by 6.8% relative to that estimated from an individual-level data BayesR analysis of data from the UKB (n ≈ 450, 000). Compared with commonly used state-of-the-art summarybased methods, SBayesR improved the prediction R 2 by 4.1% relative to LDpred and by 28.7% relative to clumping and p-value thresholding. SBayesR gave comparable prediction accuracy to the recent RSS method, which has a similar model, but at a computational time that is two orders of magnitude smaller. The methodology is implemented in a very efficient and user-friendly software tool titled GCTB. Introduction 1The capacity to accurately predict an individual's phenotype from their DNA sequence 2 is one of the great promises of genomics and precision medicine 1-5 , recognising that the 3 accuracy of a genetic risk predictor is dependent on the genetic contribution to variation 4 in the trait. It is anticipated that genetic risk prediction will be useful for informing early 5 disease intervention and aiding diagnosis by identifying individuals with an increased 6 genetic risk of disease 5-7 . Accurate genetic predictors for complex traits and disorders are 7 currently limited, due mainly to an incomplete understanding of complex genetic varia-8 tion, small training sample sizes and suboptimal modelling 4,8,9 . Through large consortia 9 and biobank initiatives, sample sizes for gen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.