Motile bacteria respond to environmental cues to move to more favorable locations. The components of the chemotaxis signal transduction systems that mediate these responses are highly conserved among prokaryotes including both eubacterial and archael species. The best‐studied system is that found in Escherichia coli. Attractant and repellant chemicals are sensed through their interactions with transmembrane chemoreceptor proteins that are localized in multimeric assemblies at one or both cell poles together with a histidine protein kinase, CheA, an SH3‐like adaptor protein, CheW, and a phosphoprotein phosphatase, CheZ. These multimeric protein assemblies act to control the level of phosphorylation of a response regulator, CheY, which dictates flagellar motion. Bacterial chemotaxis is one of the most‐understood signal transduction systems, and many biochemical and structural details of this system have been elucidated. This is an exciting field of study because the depth of knowledge now allows the detailed molecular mechanisms of transmembrane signaling and signal processing to be investigated. BioEssays 28:9–22, 2006. © 2005 Wiley Periodicals, Inc.
The environmental topology of complex structures is used by Escherichia coli to create traveling waves of high cell density, a prelude to quorum sensing. When cells are grown to a moderate density within a confining microenvironment, these traveling waves of cell density allow the cells to find and collapse into confining topologies, which are unstable to population fluctuations above a critical threshold. This was first observed in mazes designed to mimic complex environments, then more clearly in a simpler geometry consisting of a large open area surrounding a square (250 ؋ 250 m) with a narrow opening of 10 -30 m. Our results thus show that under nutrientdeprived conditions bacteria search out each other in a collective manner and that the bacteria can dynamically confine themselves to highly enclosed spaces.
SummaryHistidine protein kinases (HPKs) are a large family of signal-transduction enzymes that autophosphorylate on a conserved histidine residue. HPKs form two-component signaling systems together with their downstream target proteins, the response regulators, which have a conserved aspartate in a so-called 'receiver domain' that is phosphorylated by the HPK. Twocomponent signal transduction is prevalent in bacteria and is also widely used by eukaryotes outside the animal kingdom. The typical HPK is a transmembrane receptor with an aminoterminal extracellular sensing domain and a carboxy-terminal cytosolic signaling domain; most, if not all, HPKs function as dimers. They show little similarity to protein kinases that phosphorylate serine, threonine or tyrosine residues, but may share a distant evolutionary relationship with these enzymes. In excess of a thousand known genes encode HPKs, which are important for multiple functions in bacteria, including chemotaxis and quorum sensing, and in eukaryotes, including hormone-dependent developmental processes. The proteins divide into at least 11 subfamilies, only one of which is present in eukaryotes, suggesting that lateral gene transfer gave rise to two-component signaling in these organisms. Gene organization and evolutionary historyHistidine protein kinases (HPKs), together with their partner response regulators, are undoubtedly the most widely used of all signal-transduction enzymes in nature. They are present in all three major kingdoms of life (the Bacteria, Archaea and Eukarya) [1,2], and function in the sensing of a cells external environment [3]. .or unicellular organisms this usually equates to sensing nutrients, chemoattractants, osmotic conditions and so on. HPKs are also responsible for coordinating the behavior of cell populations. In bacteria this takes the form of quorum sensing [4]. In Eukarya, where HPKs appear to be confined to plants and to free-living organisms, such as yeasts, fungi and protozoa, HPKs have roles in regulating hormone-dependent developmental processes [5]; for example, HPKs are responsible for transducing the effects of the hormone ethylene in plants [6], and for coordinating the development of the fruiting body of the slime mold Dictyostelium discoideum [5]. No HPK (or response regulator) genes are present in the completed genome sequences of Caenorhabditis elegans [7], Drosophila melanogaster [8], or Homo sapiens [9], and it is thought that these enzymes are absent from the animal kingdom as a whole.HPKs (and response regulators) probably arose in bacteria and, with few exceptions, are found in all bacterial species [2], which have a wide variation of HPK gene numbers: for example, the Escherichia coli and Bacillus subtilis genomes both contain about 25 HPK genes; in contrast, Helicobacter pylori has only four HPKs, and the three Mycoplasma species whose genomes have been sequenced (M. genitalium, M. pneumoniae, and M. pulmonis) are among the rare
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.