The electrical resistivity of mammalian tissues varies widely (1-5) and is correlated with physiological function (6-8). Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body (9-11). But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem (10,12). This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane (13). A few studies have attempted three-dimensional EIT image reconstruction (14,15), but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus (16) with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening (8).
Aims Pulmonary arterial hypertension (PAH) is a progressive condition with high mortality. Quantitative cardiovascular magnetic resonance (CMR) imaging metrics in PAH target individual cardiac structures and have diagnostic and prognostic utility but are challenging to acquire. The primary aim of this study was to develop and test a tensor-based machine learning approach to holistically identify diagnostic features in PAH using CMR, and secondarily, visualize and interpret key discriminative features associated with PAH. Methods and results Consecutive treatment naive patients with PAH or no evidence of pulmonary hypertension (PH), undergoing CMR and right heart catheterization within 48 h, were identified from the ASPIRE registry. A tensor-based machine learning approach, multilinear subspace learning, was developed and the diagnostic accuracy of this approach was compared with standard CMR measurements. Two hundred and twenty patients were identified: 150 with PAH and 70 with no PH. The diagnostic accuracy of the approach was high as assessed by area under the curve at receiver operating characteristic analysis (P < 0.001): 0.92 for PAH, slightly higher than standard CMR metrics. Moreover, establishing the diagnosis using the approach was less time-consuming, being achieved within 10 s. Learnt features were visualized in feature maps with correspondence to cardiac phases, confirming known and also identifying potentially new diagnostic features in PAH. Conclusion A tensor-based machine learning approach has been developed and applied to CMR. High diagnostic accuracy has been shown for PAH diagnosis and new learnt features were visualized with diagnostic potential.
Objectives To develop a high-performance, rapid semi-automated method (Sheffield TKV Tool) for measuring total kidney volume (TKV) from magnetic resonance images (MRI) in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods TKV was initially measured in 61 patients with ADPKD using the Sheffield TKV Tool and its performance compared to manual segmentation and other published methods (ellipsoidal, mid-slice, MIROS). It was then validated using an external dataset of MRI scans from 65 patients with ADPKD. Results Sixty-one patients (mean age 45 ± 14 years, baseline eGFR 76 ± 32 ml/min/1.73 m 2 ) with ADPKD had a wide range of TKV (258–3680 ml) measured manually. The Sheffield TKV Tool was highly accurate (mean volume error 0.5 ± 5.3% for right kidney, − 0.7 ± 5.5% for left kidney), reproducible (intra-operator variability − 0.2 ± 1.3%; inter-operator variability 1.1 ± 2.9%) and outperformed published methods. It took less than 6 min to execute and performed consistently with high accuracy in an external MRI dataset of T2-weighted sequences with TKV acquired using three different scanners and measured using a different segmentation methodology (mean volume error was 3.45 ± 3.96%, n = 65). Conclusions The Sheffield TKV Tool is operator friendly, requiring minimal user interaction to rapidly, accurately and reproducibly measure TKV in this, the largest reported unselected European patient cohort with ADPKD. It is more accurate than estimating equations and its accuracy is maintained at larger kidney volumes than previously reported with other semi-automated methods. It is free to use, can run as an independent executable and will accelerate the application of TKV as a prognostic biomarker for ADPKD into clinical practice. Key Points • This new semi-automated method (Sheffield TKV Tool) to measure total kidney volume (TKV) will facilitate the routine clinical assessment of patients with ADPKD. • Measuring TKV manually is time consuming and laborious. • TKV is a prognostic indicator in ADPKD and the only imaging biomarker approved by the FDA and EMA. Electronic supplementary material The online version of this article (10.1007/s00330-018-5918-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.