Objectives To develop a high-performance, rapid semi-automated method (Sheffield TKV Tool) for measuring total kidney volume (TKV) from magnetic resonance images (MRI) in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods TKV was initially measured in 61 patients with ADPKD using the Sheffield TKV Tool and its performance compared to manual segmentation and other published methods (ellipsoidal, mid-slice, MIROS). It was then validated using an external dataset of MRI scans from 65 patients with ADPKD. Results Sixty-one patients (mean age 45 ± 14 years, baseline eGFR 76 ± 32 ml/min/1.73 m 2 ) with ADPKD had a wide range of TKV (258–3680 ml) measured manually. The Sheffield TKV Tool was highly accurate (mean volume error 0.5 ± 5.3% for right kidney, − 0.7 ± 5.5% for left kidney), reproducible (intra-operator variability − 0.2 ± 1.3%; inter-operator variability 1.1 ± 2.9%) and outperformed published methods. It took less than 6 min to execute and performed consistently with high accuracy in an external MRI dataset of T2-weighted sequences with TKV acquired using three different scanners and measured using a different segmentation methodology (mean volume error was 3.45 ± 3.96%, n = 65). Conclusions The Sheffield TKV Tool is operator friendly, requiring minimal user interaction to rapidly, accurately and reproducibly measure TKV in this, the largest reported unselected European patient cohort with ADPKD. It is more accurate than estimating equations and its accuracy is maintained at larger kidney volumes than previously reported with other semi-automated methods. It is free to use, can run as an independent executable and will accelerate the application of TKV as a prognostic biomarker for ADPKD into clinical practice. Key Points • This new semi-automated method (Sheffield TKV Tool) to measure total kidney volume (TKV) will facilitate the routine clinical assessment of patients with ADPKD. • Measuring TKV manually is time consuming and laborious. • TKV is a prognostic indicator in ADPKD and the only imaging biomarker approved by the FDA and EMA. Electronic supplementary material The online version of this article (10.1007/s00330-018-5918-9) contains supplementary material, which is available to authorized users.
A novel and effective pharynx and larynx cancer segmentation framework (PLCSF) is presented for automatic base of tongue and larynx cancer segmentation from gadolinium-enhanced T1-weighted magnetic resonance images (MRI). The aim of the proposed PLCSF is to assist clinicians in radiotherapy treatment planning. The initial processing of MRI data in PLCSF includes cropping of region of interest; reduction of artefacts and detection of the throat region for the location prior. Further, modified fuzzy c-means clustering is developed to robustly separate candidate cancer pixels from other tissue types. In addition, region-based level set method is evolved to ensure spatial smoothness for the final segmentation boundary after noise removal using non-linear and morphological filtering. Validation study of PLCSF on 102 axial MRI slices demonstrate mean dice similarity coefficient of 0.79 and mean modified Hausdorff distance of 2.2 mm when compared with manual segmentations. Comparison of PLCSF with other algorithms validates the robustness of the PLCSF. Inter- and intra-variability calculations from manual segmentations suggest that PLCSF can help to reduce the human subjectivity
Abstract-A new algorithm for 3D throat region segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm initially pre-processes the MRI data to increase the contrast between the throat region and its surrounding tissues and also to reduce artifacts. Isotropic 3D volume is reconstructed using Fast Fourier Transform based interpolation. Furthermore, a cube encompassing the throat region is evolved using level set method to form a smooth 3D boundary of the throat region. The results of the proposed algorithm on real and synthetic MRI data are used to validate the robustness and accuracy of the algorithm.
This newly designed MRI-based auto-contouring software tool shows initial acceptable results in GTV delineation of oropharyngeal and laryngeal tumours using FCLSM. This auto-contouring software tool may help reduce inter- and intra-variability and can assist clinical oncologists with time-consuming, complex radiotherapy planning.
Radiation therapy is one of the most effective modalities for treatment of tongue cancer. In order to optimize radiation dose to the tumor region, it is necessary to segment the tumor from normal region. This paper presents a new semiautomatic algorithm that is demonstrated to be able to segment tongue tumor from gadolinium-enhanced T1-weighted magnetic resonance imaging (MRI) to support radiation planning. This algorithm takes sequential MRI slices with visible tongue tumor. The Tumor's region from each slice is segmented using three steps (i) preprocessing, (ii) initialization and (iii) localized region-based level set segmentation. The segmentation results obtained from proposed algorithm are compared with manual segmentation from clinical expert. Results from 9 MRI slices show that there is a good overlap between semi-automatic and manual segmentation results with dice similarity coefficient (DSC) of 0.87±0.05
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.