The use of insects for evaluating the virulence of microbial pathogens and for determining the efficacy of antimicrobial drugs is increasing. When larvae of the greater wax moth Galleria mellonella were incubated at 4 or 37°C for 24 h. prior to infection, they manifested increased resistance to infection by the yeast Candida albicans compared to larvae that had been pre-incubated for 24 h at 30°C. Incubation at 4 or 37°C led to an increase in haemocyte density and the expression of genes coding for gallerimycin, transferrin, an inducible metalloproteinase inhibitor (IMPI) and galiomicin. Peak expression of these genes was recorded at approximately 24 h after the commencement of the 4 or 37°C incubation. These results indicate that exposure of larvae to mild thermal shock conditions induces a protective cellular and humoral immune response mediated by increased numbers of haemocytes and elevated expression of antimicrobial peptides.
Galleria mellonella larvae were inoculated with different doses of beta-glucan by injection into the haemocoel. Those larvae that had received high doses of beta-glucan (15, 30 or 60microg/larva) demonstrated increased survival following infection with the yeast Candida albicans. High concentrations of glucan induced an increase in haemocyte density and a reduction in yeast proliferation within the haemocoel. Proteomic analysis of glucan-treated larvae revealed increased expression of a variety of peptides some of which may possess antimicrobial properties. Analysis of expression profiles revealed that low doses of beta-glucan (3.75microg/larva) triggered the increased expression of certain peptides (e.g. hemolin) while high dose inoculation was required before the increased expression of others (e.g. archaemetzincin) was evident. These results indicate that low doses of beta-glucan induce a limited immune response while high doses induce an immune response that has the potential to curtail the threat within the haemocoel but also withstand a subsequent infection. Immune priming gives insects the ability to withstand a potentially lethal infection if exposed to a low level of the pathogen 24-48h previously. Immune priming has resource implications and this work indicates that a graded immune response is initiated depending upon the amount of the immune priming agent encountered.
Larvae of the greater wax moth (Galleria mellonella) that had been subjected to physical stress by shaking in cupped hands for 2 min showed reduced susceptibility to infection by Candida albicans when infected 24 h after the stress event. Physically stressed larvae demonstrated an increase in haemocyte density and elevated mRNA levels of galiomicin and an inducible metalloproteinase inhibitor (IMPI ) but not transferrin or gallerimycin. In contrast, previous work has demonstrated that microbial priming of larvae resulted in the induction of all four genes. Examination of the expression of proteins in the insect haemolymph using 2D electrophoresis and MALDI TOF analysis revealed an increase in the intensity of a number of peptides showing some similarities with proteins associated with the insect immune response to infection. This study demonstrates that non-lethal physical stress primes the immune response of G. mellonella and this is mediated by elevated haemocyte numbers, increased mRNA levels of genes coding for two antimicrobial peptides and the appearance of novel peptides in the haemolymph. This work demonstrates that physical priming increases the insect immune response but the mechanism of this priming is different to that induced by low level exposure to microbial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.