This first part of a series of papers on the thermo-mechanical responses of fiber-reinforced composites at elevated temperatures reports the experimental results required as input data in order to validate the kinetic, heat transfer, and thermo-mechanical models being developed and to be discussed in subsequent papers. Here the experimental techniques used for the determination of physical, thermal, and mechanical properties and their significance for particular models are discussed. The fire retardant system used to improve the fire performance of glass fiber-reinforced epoxy composites is a combination of a cellulosic charring agent and an interactive intumescent, melamine phosphate. Thermogravimetry is used to obtain kinetic parameters and to evaluate the temperature-dependent physical properties such as density, thermal conductivity, and specific heat capacity, determined using other techniques. During flammability evaluation under a cone calorimeter at 50 kW/m 2 heat flux, thermocouples are used to measure temperatures through the thicknesses of samples. To investigate their thermo-mechanical behavior, the composites are exposed to different heating environments and their residual flexural modulus after cooling to ambient temperatures determined. At a low heating rate of 10 C/min and convective conditions, there was a minimal effect of fire retardant additives on mechanical property retention, indicating that fire retardants have no effect on the glass transition temperature of the resin. On the other hand, the fireretarded coupons exposed to a radiant heat from cone calorimeter, where the heating rate is about 200 C/min, showed 60% retention of flexural modulus after a 40-s exposure, compared to 20% retention observed for the control sample after cooling specimens to ambient temperatures.
This work involves the development of novel glass fiber-reinforced composite materials containing a commercially available epoxy resin, a phosphate-based intumescent, and inherently flame-retardant cellulosic (Visil, Sateri) and phenol-formaldehyde (Kynol) fibers. The intumescent and flame-retardant fiber components were added both as additives in pulverized form and fiber interdispersed with the intumescent as a fabric scrim for partial replacement of glass fiber. Thermal stability, char formation, and flammability properties of these novel structures were studied by thermal analysis, limiting oxygen index, and cone calorimetry. The results are discussed in terms of effect of individual additive component on thermal degradation/ burning behavior of neat resin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.