This paper presents a navigation method for a mobile robot using a visual system. Circular marks with specific colors are used for marking the significant points of the mobile robot's trajectory that it needs to pass. The colors of the used marks are signalizing the way of their bypassing with the mobile robot (from the left or right side). The mobile robot uses only one camera for the marks recognition task and it is able to determine its own relative position from the detected marks. The image processing and the mobile robot's trajectory planning algorithm working in real-time are described in this paper.
This paper presents the approach to improve localization based on GNSS. The principles of the GPS localization and impact of the DOP parameter on localization error are mathematically analyzed. The algorithm based on the use of DOP parameter and Kalman filter for the improvement of the localization accuracy suitable for small scale outdoor mobile robots and other outdoor applications is proposed. The applicability of the proposed methodology was verified by performed experiments with two common cheap miniature GPS modules and accurate high-end GNSS receiver used as a reference frame for the measurements. The obtained results affirmed the improvement of the localization accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.