The inability of regional models and global climate models to reproduce Arctic clouds and the Arctic radiation budget may be due to inadequate parameterizations of ice nuclei.
Rainfall-generated floods in the Arctic are rare and seldom documented. The authors were fortunate in July 1999 to monitor such a flood on the Upper Kuparuk River in response to a 50-h duration rainfall event that produced a watershed average in excess of 80 mm. Atmospheric conditions prevailed that allowed moist air to move northward over areas of little or no vertical relief from the North Pacific Ocean to the Arctic Ocean. Cyclogenesis occurred along the quasi-stationary front separating maritime and continental air masses along the arctic coast. This low-pressure system propagated southward (inland) over the 142-km 2 headwater basin of the Kuparuk River in the northern foothills of the Brooks Range; a treeless area underlain by continuous permafrost. This research catchment was instrumented with a stream gauging station, two major and six minor meteorological stations, for a total of eight shielded rain gauges. The peak instantaneous flow was estimated at 100 m 3 s Ϫ1 and was about 3 times greater than any previously measured flood peak. Historically in the Arctic, annual peak floods occur following snowmelt when the snowpack that has accumulated for 8-9 months typically melts in 7-14 days. The shallow active layer, that surficial layer that freezes and thaws each year over the continuous permafrost, has limited subsurface storage when only thawed to a depth of 40 cm (at the time of the flood). Typically for this area, the ratio of runoff volume to snowmelt volume is near 0.67 or greater and the ratio for cumulative summer runoff and rainfall averages around 0.5 or greater. For the storm discussed here the runoff ratio was 0.73. These high runoff ratios are due to the role of permafrost limiting the potential subsurface storage and the steep slopes of this headwater basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.