Neuritic plaques are a pathological hallmark of Alzheimer's disease (AD). However, the origin of extracellular amyloid peptide (Aβ) deposits and the process of plaque development remain poorly understood. The present study attempted to explore plaque pathogenesis by localizing β-secretase-1 (BACE1) elevation relative to amyloid peptide (Aβ) accumulation and synaptic/neuritic alterations in the forebrain using transgenic (Tg) mice harboring familial AD (FAD) mutations (5XFAD and 2XFAD) as models. In animals with fully-developed plaque pathology, locally elevated BACE1 immunoreactivity (ir) coexisted with compact-like Aβ deposition, with BACE1-ir occurring selectively in dystrophic axons of various neuronal phenotypes or origins (GABAergic, glutamatergic, cholinergic or catecholaminergic). Prior to plaque onset, localized BACE1/Aβ-ir occurred at swollen presynaptic terminals and fine axonal processes. These BACE1/Aβ-containing axonal elements appeared to undergo a continuing process of sprouting/swelling and dystrophy, during which extracellular Aβ-ir emerged and accumulated in surrounding extracellular space. These data suggest that BACE1 elevation and associated Aβ overproduction inside the sprouting/dystrophic axonal terminals coincide with the onset and accumulation of extracellular amyloid deposition during the development of neuritic plaques in transgenic models of AD. Our findings appear in harmony with an early hypothesis that axonal pathogenesis plays a key or leading role in plaque formation.
Doublecortin-immunoreactive (DCX+) cells were detected across the allo- and neo-cortical regions in the adult guinea pig cerebrum, localized to layer II specifically at its border with layer I. The density of labeled cells declined with age, whereas no apparent apoptotic activity was detectable over the cortex including layer II. DCX+ cells varied in somal size, labeling intensity, nuclear appearance, and complexity of processes. These cells were often arranged in clusters with cells of similar morphology sometimes packed tightly together. They exhibited complete colocalization with polysialylated neural cell adhesion molecule (PSA-NCAM) and neuron-specific type III beta-tubulin (TuJ1). Medium to large-sized DCX+ cells had well-developed neuritic processes, and expressed neuron-specific nuclear protein (NeuN). Large mature-looking cells with weak DCX reactivity invariably displayed heavy NeuN reactivity, implicating a transitional stage of these labeled cells. These "transitional" cells also consistently exhibited weak reactivity for gamma-aminobutyric acid (GABA), glutamate decarboxylase (GAD67), beta-nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and neuronal nitric oxide synthase (nNOS), suggestive of them being young GABAergic/nitrinergic interneurons. Our data indicate that DCX+ cells exist widely in the adult guinea pig cerebral cortex, with a predominant localization in upper layer II. The morphological variation and differential expression of neuronal markers in these cells implicate that they might be developing neurons, and that they are probably differentiating into GABAergic interneurons. This population of cells might be involved in interneuron plasticity in the adult mammalian cerebral cortex.
DCX-immunoreactive (DCX+) cells occur in the piriform cortex in adult mice and rats, but also in the neocortex in adult guinea pigs and rabbits. Here we describe these cells in adult domestic cats and primates. In cats and rhesus monkeys, DCX+ cells existed across the allo- and neocortex, with an overall ventrodorsal high to low gradient at a given frontal plane. Labeled cells formed a cellular band in layers II and upper III, exhibiting dramatic differences in somal size (5–20 μm), shape (unipolar, bipolar, multipolar and irregular), neuritic complexity and labeling intensity. Cell clusters were also seen in this band, and those in the entorhinal cortex extended into deeper layers as chain-like structures. Densitometry revealed a parallel decline of the cells across regions with age in cats. Besides the cellular band, medium-sized cells with weak DCX reactivity resided sparsely in other layers. Throughout the cortex, virtually all DCX+ cells co-expressed polysialylated neural cell adhesion molecule. Medium to large mature-looking DCX+ cells frequently colocalized with neuron-specific nuclear protein and γ-aminobutyric acid (GABA), and those with a reduced DCX expression also partially co-labeled for glutamic acid decarboxylase, parvalbumin, calbindin, β-nicotinamide adenine dinucleotide phosphate diaphorase and neuronal nitric oxide synthase. Similar to cats and monkeys, small and larger DCX+ cells were detected in surgically removed human frontal and temporal cortices. These data suggest that immature neurons persist into adulthood in many cortical areas in cats and primates, and that these cells appear to undergo development and differentiation to become functional subgroups of GABAergic interneurons.
In humans with temporal lobe epilepsy and kainate-treated rats, the mossy fibers of the dentate granule cells send collateral axons into the inner molecular layer. Prior investigations on kainate-treated rats demonstrated that abnormal hilar-evoked events can occasionally be observed in slices with mossy fiber sprouting when gamma-aminobutyric acid-A (GABAA)-mediated inhibition is blocked with bicuculline. However, these abnormalities were observed infrequently, and it was unknown whether these rats were epileptic. Wuarin and Dudek reported that in slices from kainate-induced epileptic rats (3-13 mo after treatment), hilar stimulation evoked abnormal events in most slices with mossy fiber sprouting exposed simultaneously to bicuculline and elevated extracellular potassium concentration [K+]o. Using the same rats, extracellular recordings were obtained from granule cells in hippocampal slices to determine whether 1) hilar stimulation could evoke abnormal events in slices with sprouting in normal artificial cerebrospinal fluid (ACSF), 2) adding only bicuculline could unmask hilar-evoked abnormalities and glutamate-receptor antagonists could block these events, and 3) increasing only [K+]o could unmask these abnormalities. In normal ACSF, hilar stimulation evoked abnormal field potentials in 27% of slices with sprouting versus controls without sprouting (i.e., saline-treated or only 2-4 days after kainate treatment). In bicuculline (10 microM) alone, hilar stimulation triggered prolonged field potentials in 84% of slices with sprouting, but not in slices from the two control groups. Addition of the N-methyl-D-aspartate (NMDA) receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (AP5), either blocked the bursts or reduced their probability of occurrence. The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), always eliminated the epileptiform bursts. In kainate-treated rats with sprouting, but not in saline-treated controls, abnormal hilar-evoked responses were also revealed in 6-9 mM [K+]o. Additionally, 63% of slices with sprouting generated spontaneous bursts lasting 1-40 s in ACSF containing 9 mm [K+]o; similar bursts were not observed in controls. These results indicate that 1) mossy fiber sprouting is associated with new glutamatergic pathways, and although NMDA receptors are important for propagation through these circuits, AMPA receptor activation is crucial, 2) modest elevations of [K+]o, in a range that would have relatively little effect on granule cells, can unmask these new excitatory circuits and generate epileptiform bursts, and 3) this new circuitry underlies an increased electrographic seizure susceptibility when inhibition is depressed or membrane excitability is increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.