Heavy metal concentrations were determined in 43 perches (Perca fluviatilis) and in two of its most common parasites, the acanthocephalan Acanthocephalus lucii and the cestode Proteocephalus percae, collected in the period 2009–2010 from Ružín, a seriously polluted water reservoir in Slovakia. Samples of muscle, liver, kidney, brain, male and female reproductive organs and adipose tissue of fish and both parasites were analyzed for As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn, by ICP-MS. Mean concentrations of individual heavy metals in all fish samples decreased in the order zinc > copper > manganese > mercury > arsenic > chromium > cadmium > nickel > lead. Zinc was found to be the dominant element and its antagonistic interaction with copper was confirmed. The kidney was a key target organ receiving the highest mean concentrations of all analyzed metals, but some metals showed specific affinity for particular tissues. In terms of human health, concentration of Hg in fish muscle, which exceeded more than two-times its maximum level admitted in foodstuffs in European countries, is of great importance and should be taken into account. Bioaccumulation factors (C[parasite]/C[fish tissue]) calculated for all elements indicated much higher detection skills of A. lucii and P. percae parasites than fish organs and hence, present results allow proposing both parasite models as useful tools to monitor aquatic environmental quality. Acanthocephalans, however, seem to be superior for heavy metal monitoring, also demonstrated under experimental conditions. Present results also indicate the decreasing heavy metal burden of the reservoir and its gradual recovery in the course of time.
The effect of distance from a heavy metal pollution source on the soil nematode community was investigated on four sampling sites along an 4 km transect originating at the Kovohuty a.s. Krompachy (pollution source). The soil nematode communities were exposed to heavy metal influence directly and through soil properties changes. We quantified the relative effects of total and mobile fraction of metals (As, Cd, Cr, Cu, Pb, and Zn) on soil ecosystem using the nematode community structure (trophic and c-p groups,) and ecological indices (Richness of genera, H', MI2-5, etc.). Pollution effects on the community structure of soil free living nematodes was found to be the highest near the pollution source, with relatively low population density and domination of insensitive taxa. A decrease in heavy metals contents along the transect was linked with an increase in complexity of nematode community. The majority of used indices (MI2-5, SI, H') negatively correlated (P < 0.05 or P < 0.01) with heavy metals content and were sensitive to soil ecosystem disturbance. Contamination by heavy metals has negatively affected the soil environment, which resulted in nematode community structure and ecological indices changes. Results showed that the free-living nematodes are useful tools for bioindication of contamination and could be used as an alternative to the common approaches based on chemical methods.
A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.