The reaction of 5,10,15-trimesitylcorrole (H3 cor) with tungsten hexachloride and tungsten hexacarbonyl resulted in the unexpected formation of the 3,17-dichloro-5,10,15-trimesitylcorrole radical (H2 cor*) as an air-stable product. X-ray crystallography proved the planarization of the corrole radical structure, which was rationalized by the reduced steric hindrance of two versus three hydrogen atoms inside the N4 cavity. Although the aromaticity was lost, no specific changes in C-C or C-N bond distances could be observed. The regioselectivity of the two-fold chlorination is the result of the nucleophilic attack of chloride ions to an oxidized corrole macrocycle, and is supported by DFT results. The corrole radical acts as a dianionic ligand and allows the insertion of the divalent zinc(II) cation, which usually does not form neutral corrole complexes.
Nickel, palladium, and copper complexes of the tripyrrolic ligand hexaethyltripyrrindione (H 3 Et 6 tpd, 1) have been prepared and characterized by UV/Vis and EPR spectroscopy, as well as by single-crystal X-ray structure determination. In all cases the metal ion is coordinated in a distorted square-planar geometry carrying a water ligand at the fourth coordination site. The Et 6 tpd ligand acts as a radical dianion in all cases. In solution, monomeric species are present in which the open-
The reaction of the 2-(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4-R-C H ) BX (R=H, X=Br; R=CH , X=Cl; R=CF , X=Cl) afforded the NHC-stabilized borenium cations 10 a-c. Cyclic voltammetry revealed a linear correlation between the Hammett parameter σ of the para substituent and the half-wave potential. Chemical reduction with decamethylcobaltocene, [(C Me ) Co], furnished the corresponding radicals 11 a-c; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a-c, with large hyperfine coupling constants to the boron isotopes B and B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR ) revealed for 11 a-c a spin density ratio (BR /NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X-ray diffraction analysis.
Radical -adenosylmethionine (SAM) enzymes exist in organisms from all kingdoms of life, and all of these proteins generate an adenosyl radical via the homolytic cleavage of the S-C(5') bond of SAM. Of particular interest are radical SAM enzymes, such as heme chaperones, that insert heme into respiratory enzymes. For example, heme chaperones insert heme into target proteins but have been studied only for the formation of cytochrome-type hemoproteins. Here, we report that a radical SAM protein, the heme chaperone HemW from bacteria, is required for the insertion of heme b into respiratory chain enzymes. As other radical SAM proteins, HemW contains three cysteines and one SAM coordinating an [4Fe-4S] cluster, and we observed one heme per subunit of HemW. We found that an intact iron-sulfur cluster was required for HemW dimerization and HemW-catalyzed heme transfer but not for stable heme binding. A bacterial two-hybrid system screen identified bacterioferritins and the heme-containing subunit NarI of the respiratory nitrate reductase NarGHI as proteins that interact with HemW. We also noted that the bacterioferritins potentially serve as heme donors for HemW. Of note, heme that was covalently bound to HemW was actively transferred to a heme-depleted, catalytically inactive nitrate reductase, restoring its nitrate-reducing enzyme activity. Finally, the human HemW orthologue radical SAM domain-containing 1 (RSAD1) stably bound heme. In conclusion, our findings indicate that the radical SAM protein family HemW/RSAD1 is a heme chaperone catalyzing the insertion of heme into hemoproteins.
The heme synthase AhbD catalyzes the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme during the alternative heme biosynthesis pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.