Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.
Applied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adenoassociated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 · 10 10 or 4 · 10 11 vg/eye). Half the animals were sacrificed after 14 days and the others after 91 or 115 days. The intravitreal injection procedure was well tolerated in all groups. Serial ophthalmic examinations demonstrated a dose-related anterior and posterior segment inflammatory response that improved over time. There were no test article-related effects on intraocular pressure, electroretinography, visual evoked potential, hematology, coagulation, clinical chemistry, or gross necropsy observations. Histopathological examination demonstrated minimal or moderate mononuclear infiltrates in 6 of 12 vector-injected eyes. Immunohistochemical staining showed RS1 labeling of the ganglion cell layer at the foveal slope in vector-injected eyes at both dose levels. Serum anti-AAV antibodies were detected in 4 of 6 vector-injected animals at the day 15 sacrifice and all vector-injected animals at later time points. No animals developed antibodies to RS1. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS.
Applied Genetic Technologies Corporation is developing a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of the layers of the retina, which causes poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in RS1-deficient mice. Three groups of male RS1-deficient mice received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (1 × 10(9) or 4 × 10(9) vg/eye) and were sacrificed 30 or 90 days later. The intravitreal injection procedure was well tolerated in all groups, with no test article-related changes in ophthalmic examinations. Two low-dose vector-treated animals had minimally to mildly higher white blood cell counts at day 90. There were no other intergroup differences in hematology or clinical chemistry analyses and no test article-related gross necropsy observations. Microscopic pathology results demonstrated minimal to slight mononuclear cell infiltrates in 80% of vector-injected eyes at day 30 and 20% of vector-injected eyes at day 90. Immunohistochemistry studies showed RS1 labeling of the retina in all vector-treated eyes. At the day 90 sacrifice, there was a decrease in the severity of splitting/disorganization of the inner nuclear layer of the retina in high-dose vector-treated eyes. Biodistribution studies demonstrated vector DNA in vector-injected eyes but not in any nonocular tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS.
When a colony of the swarm-founding social wasp Polybia occidentals loses its nest to severe weather or predation, the adult population evacuates and temporarily clusters on nearby foliage. Most of the adults remain inactive in the cluster, while foragers bring in nectar and scout wasps search the surrounding area for a new nesting site. After several hours, the scouts stimulate the rest of the swarm to leave the cluster and follow their pheromone trail to the chosen site. How scouts communicate to their swarm-mates that a site has been chosen and how they induce the swarm to depart are unknown. Video records of six Costa Rican swarms were used to quantitatively document changes in the frequencies of social behaviors leading to swarm departure. This was accomplished by going backward through the video record and following the behavior of individuals prior to their departure. Analysis of the behavior of scouts and inactive wasps indicated an increase in the frequency with which scouts bump into inactive wasps prior to swarm departure, as well as a shift in the behavior of inactive wasps from primarily receiving bumps to bumping others before departure. Thus, bumping is propagated by recently activated individuals before they take off. These observations suggest that not only is bumping an activation stimulus that causes swarm members to depart for the new nest site, but it is contagious, leading to its amplification throughout the swarm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.