The links among the changes in litter chemistry, the activity of extracellular enzymes and the microbial community composition were observed in Quercus petraea litter. Three phases of decomposition could be distinguished. In the early 4-month stage, with high activities of β-glucosidase, β-xylosidase and cellobiohydrolase, 16.4% of litter was decomposed. Hemicelluloses were rapidly removed while cellulose and lignin degradation was slow. In months 4-12, with high endocellulase and endoxylanase activities, decomposition of cellulose prevailed and 31.8% of litter mass was lost. After the third phase of decomposition until month 24 with high activity of ligninolytic enzymes, the litter mass loss reached 67.9%. After 2 years of decay, cellulose decomposition was almost complete and most of the remaining polysaccharides were in the form of hemicelluloses. Fungi largely dominated over bacteria as leaf endophytes and also in the litter immediately before contact with soil, and this fungal dominance lasted until month 4. Bacterial biomass (measured as phospholipid fatty acid content) in litter increased with time but also changed qualitatively, showing an increasing number of Actinobacteria. This paper shows that the dynamics of decomposition of individual litter components changes with time in accordance with the changes in the microbial community composition and its production of extracellular enzymes.
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.
Abstract. Feedback to climate warming from the carbon balance of terrestrial ecosystems depends critically on the temperature sensitivity of soil organic carbon (SOC) decomposition. Still, the temperature sensitivity is not known for the majority of the SOC, which is tens or hundreds of years old. This old fraction is paradoxically concluded to be more, less, or equally sensitive compared to the younger fraction. Here, we present results that explain these inconsistencies. We show that the temperature sensitivity of decomposition increases remarkably from the youngest annually cycling fraction (Q 10 , 2) to a decadally cycling one (Q 10 ¼ 4.2-6.9) but decreases again to a centennially cycling fraction (Q 10 ¼ 2.4-2.8) in boreal forest soil. Compared to the method used for current global estimates (temperature sensitivity of all SOC equal to that of the total heterotrophic soil respiration), the soils studied will lose 30-45% more carbon in response to climate warming during the next few decades, if there is no change in carbon input. Carbon input, derivative of plant productivity, would have to increase by 100-120%, as compared to the earlier estimated 70-80%, in order to compensate for the accelerated decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.