The cyclic alkyl(amino) carbene (cAAC:)-stabilized acyclic germylones (Me2-cAAC:)2Ge (1) and (Cy2-cAAC:)2Ge (2) were prepared utilizing a one-pot synthesis of GeCl2(dioxane), cAAC:, and KC8 in a 1:2:2.1 molar ratio. Dark green crystals of compounds 1 and 2 were produced in 75 and 70% yields, respectively. The reported methods for the preparation of the corresponding silicon compounds turned out to be not applicable in the case of germanium. The single-crystal X-ray structures of 1 and 2 feature the C-Ge-C bent backbone, which possesses a three-center two-electron π-bond system. Compounds 1 and 2 are the first acyclic germylones containing each one germanium atom and two cAAC: molecules. EPR measurements on compounds 1 and 2 confirmed the singlet spin ground state. DFT calculations on 1/2 revealed that the singlet ground state is more stable by ~16 to 18 kcal mol(-1) than that of the triplet state. First and second proton affinity values were theoretically calculated to be of 265.8 (1)/267.1 (2) and 180.4 (1)/183.8 (2) kcal mol(-1), respectively. Further calculations, which were performed at different levels suggest a singlet diradicaloid character of 1 and 2. The TD-DFT calculations exhibit an absorption band at ~655 nm in n-hexane solution that originates from the diradicaloid character of germylones 1 and 2.
The unstable species dichlorosilylene was previously stabilized by carbene. The lone pair of electrons on the silicon atom of (carbene)SiCl2 can form a coordinate bond with metal-carbonyls. Herein we report that (carbene)SiCl2 can stabilize a phosphinidene (Ar-P, a carbone analogue) with the general formula carbene→SiCl2→P-Ar (carbene = cyclic alkyl(amino) carbene (cAAC; 2) and N-heterocyclic carbene (NHC; 3)). Compounds 2 and 3 are stable, isolable, and storable at 0 °C (2) to room temperature (3) under an inert atmosphere. The crystals of 2 and 3 are dark blue and red, respectively. The intense blue color of 2 arises due to the strong intramolecular charge transfer (ICT) transition from πSi═P→π*cAAC. The electronic structure and bonding of 2, 3 were studied by theoretical calculations. The HOMO of the molecule is located on the πSi═P bond, while the LUMO is located at the carbene moiety (cAAC or NHC). The dramatic change in color of these compounds from red (3, NHC) to blue (2, cAAC) is ascribed to the difference in energy of the LUMO within the carbenes (cAAC/NHC) due to a lower lying LUMO of cAAC.
A silicon atom in the zero oxidation state stabilized by two carbene ligands is known as siladicarbene (silylone). There are two pairs of electrons on the silicon atom in silylone. This was recently confirmed by both experimental and theoretical charge density investigations. The silylone is stable up to 195°C in an inert atmosphere. However, a substoichiometric amount (33 mol%) of potassium metal triggers the activation of the unsaturated C:Si:C backbone, leading to a selective reaction with a tertiary C−H bond in an atom-economical approach to form a six-membered cyclic silylene with three-coordinate silicon atom. Cyclic voltammetry shows that this reaction proceeds via the formation of a silylone radical anion intermediate, which is further confirmed by EPR spectroscopy.
Reaction of the monoanionic radical salt IP˙(-)K(+) (IP = (Py)CH(=NR); Py = C5H4N, R = 2,6-iPr2C6H3; α-iminopyridine) with GeCl2(dioxane) afforded compound (IPGeCl)2 (1) which produced red blocks of IPGe: (2), when treated with KC8 in toluene. 1 is a digermylene formed via C-C coupling between two carbon-centered radicals. 2 can be considered as an analogue of a N-heterocyclic carbene, which exhibits a five-membered GeC2N2 ring with one C=C double bond. 2 is formed by two-electron reduction of 1 with cleavage of the two Ge-Cl bonds and the central C-C single bond.
and N 2 , and oxidative addition of C-electrophiles, C-H bonds and dioxygen, allowing for the isolation of iridium(I) and iridium(III) (PNP) carbonyl, hydrocarbyl and peroxo complexes which were spectroscopically and crystallographically characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.