The viscous linear stability of four classes of incompressible flows inside rectangular containers is studied numerically. In the first class the instability of flow through a rectangular duct, driven by a constant pressure gradient along the axis of the duct (essentially a two-dimensional counterpart to plane Poiseuille flow – PPF), is addressed. The other classes of flow examined are generated by tangential motion of one wall, in one case in the axial direction of the duct, in another perpendicular to this direction, corresponding respectively to the two-dimensional counterpart to plane Couette flow (PCF) and the classic lid-driven cavity (LDC) flow, and in the fourth case a combination of both the previous tangential wall motions. The partial-derivative eigenvalue problem which in each case governs the temporal development of global three-dimensional small-amplitude disturbances is solved numerically. The results of Tatsumi & Yoshimura (1990) for pressure-gradient-driven flow in a rectangular duct have been confirmed; the relationship between the eigenvalue spectrum of PPF and that of the rectangular duct has been investigated. Despite extensive numerical experimentation no unstable modes have been found in the wall-bounded Couette flow, this configuration found here to be more stable than its one-dimensional limit. In the square LDC flow results obtained are in line with the predictions of Ding & Kawahara (1998b), Theofilis (2000) and Albensoeder et al. (2001b) as far as one travelling unstable mode is concerned. However, in line with the predictions of the latter two works and contrary to all previously published results it is found that this mode is the third in significance from an instability analysis point of view. In a parameter range unexplored by Ding & Kawahara (1998b) and all prior investigations two additional eigenmodes exist, which are both more unstable than the mode that these authors discovered. The first of the new modes is stationary (and would consequently be impossible to detect using power-series analysis of experimental data), whilst the second is travelling, and has a critical Reynolds number and frequency well inside the experimentally observed bracket. The effect of variable aspect ratio $A\in[0.5,4]$ of the cavity on the most unstable eigenmodes is also considered, and it is found that an increase in aspect ratio results in general destabilization of the flow. Finally, a combination of wall-bounded Couette and LDC flow, generated in a square duct by lid motion at an angle $\phi\in(0,{\pi}/{2})$ with the homogeneous duct direction, is shown to be linearly unstable above a Reynolds number $\Rey\,{=}\,800$ (based on the lid velocity and the duct length/height) at all $\phi$ parameter values examined. The excellent agreement with experiment in LDC flow and the alleviation of the erroneous prediction of stability of wall-bounded Couette flow is thus attributed to the presence of in-plane basic flow velocity components.
91-11267 ABSTRACTThe linear stability of compressible plane Couette flow is investigated. The correct and proper basic velocity and temperature distributions are perturbed by a small amplitude normal mode disturbance. The full small amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in sene detail. It is found that instability can occur, although the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wavespeed of the disturbances approaches the velocity of either of the walls, and these regimes are also analyzed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.
The phenomenon of Tollmien-Schlichting wave generation in a boundary layer by free-stream turbulence is analysed theoretically by means of asymptotic solution of the Navier-Stokes equations at large Reynolds numbers (Re → ∞). For simplicity the basic flow is taken to be the Blasius boundary layer over a flat plate. Free-stream turbulence is taken to be uniform and thus may be represented by a superposition of vorticity waves. Interaction of these waves with the flat plate is investigated first. It is shown that apart from the conventional viscous boundary layer of thickness O(Re−1/2), a ‘vorticity deformation layer’ of thickness O(Re−1/4) forms along the flat-plate surface. Equations to describe the vorticity deformation process are derived, based on multiscale asymptotic techniques, and solved numerically. As a result it is shown that a strong singularity (in the form of a shock-like distribution in the wall vorticity) forms in the flow at some distance downstream of the leading edge, on the surface of the flat plate. This is likely to provoke abrupt transition in the boundary layer. With decreasing amplitude of free-stream turbulence perturbations, the singular point moves far away from the leading edge of the flat plate, and any roughness on the surface may cause Tollmien-Schlichting wave generation in the boundary layer. The theory describing the generation process is constructed on the basis of the ‘triple-deck’ concept of the boundary-layer interaction with the external inviscid flow. As a result, an explicit formula for the amplitude of Tollmien-Schlichting waves is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.