Meyn and Tweedie is back! The bible on Markov chains in general state spaces has been brought up to date to reflect developments in the field since 1996 - many of them sparked by publication of the first edition. The pursuit of more efficient simulation algorithms for complex Markovian models, or algorithms for computation of optimal policies for controlled Markov models, has opened new directions for research on Markov chains. As a result, new applications have emerged across a wide range of topics including optimisation, statistics, and economics. New commentary and an epilogue by Sean Meyn summarise recent developments and references have been fully updated. This second edition reflects the same discipline and style that marked out the original and helped it to become a classic: proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background.
In many settings in which Monte Carlo methods are applied, there may be no known algorithm for exactly generating the random object for which an expectation is to be computed. Frequently, however, one can generate arbitrarily close approximations to the random object. We introduce a simple randomization idea for creating unbiased estimators in such a setting based on a sequence of approximations. Applying this idea to computing expectations of path functionals associated with stochastic differential equations (SDEs), we construct finite variance unbiased estimators with a "square root convergence rate" for a general class of multidimensional SDEs. We then identify the optimal randomization distribution. Numerical experiments with various path functionals of continuous-time processes that often arise in finance illustrate the effectiveness of our new approach.
We consider the problem of optimal allocation of computing budget to maximize the probability of correct selection in the ordinal optimization setting. This problem has been studied in the literature in an approximate mathematical framework under the assumption that the underlying random variables have a Gaussian distribution. We use the large deviations theory to develop a mathematically rigorous framework for determining the optimal allocation of computing resources even when the underlying variables have general, non-Gaussian distributions. Further, in a simple setting we show that when there exists an indifference zone, quick stopping rules may be developed that exploit the exponential decay rates of the probability of false selection. In practice, the distributions of the underlying variables are estimated from generated samples leading to performance degradation due to estimation errors. On a positive note, we show that the corresponding estimates of optimal allocations converge to their true values as the number of samples used for estimation increases to infinity.
Importance sampling is one of the classical variance reduction techniques for increasing the efficiency of Monte Carlo algorithms for estimating integrals. The basic idea is to replace the original random mechanism in the simulation by a new one and at the same time modify the function being integrated. In this paper the idea is extended to problems arising in the simulation of stochastic systems. Discrete-time Markov chains, continuous-time Markov chains, and generalized semi-Markov processes are covered. Applications are given to a GI/G/1 queueing problem and response surface estimation. Computation of the theoretical moments arising in importance sampling is discussed and some numerical examples given.simulation, variance reduction, importance sampling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.