Background Poor access to immunisation services remains a major barrier to achieving equity and expanding vaccination coverage in many sub-Saharan African countries. In Kenya, the extent to which spatial access affects immunisation coverage is not well understood. The aim of this study was to quantify spatial accessibility to immunising health facilities and determine its influence on immunisation uptake in Kenya while controlling for potential confounders. Methods Spatial databases of immunising facilities, road network, land use and elevation were used within a cost friction algorithim to estimate the travel time to immunising health facilities. Two travel scenarios were evaluated; (1) Walking only and (2) Optimistic scenario combining walking and motorized transport. Mean travel time to health facilities and proportions of the total population living within 1-h to the nearest immunising health facility were computed. Data from a nationally representative cross-sectional survey (KDHS 2014), was used to estimate the effect of mean travel time at survey cluster units for both fully immunised status and third dose of diphtheria-tetanus-pertussis (DPT3) vaccine using multi-level logistic regression models. Results Nationally, the mean travel time to immunising health facilities was 63 and 40 min using the walking and the optimistic travel scenarios respectively. Seventy five percent of the total population were within one-hour of walking to an immunising health facility while 93% were within one-hour considering the optimistic scenario. There were substantial variations across the country with 62%(29/47) and 34%(16/47) of the counties with < 90% of the population within one-hour from an immunising health facility using scenarios 1 and 2 respectively. Travel times > 1-h were significantly associated with low immunisation coverage in the univariate analysis for both fully immunised status and DPT3 vaccine. Children living more than 2-h were significantly less likely to be fully immunised [AOR:0.56(0.33–0.94) and receive DPT3 [AOR:0.51(0.21–0.92) after controlling for household wealth, mother’s highest education level, parity and urban/rural residence. Conclusion Travel time to immunising health facilities is a barrier to uptake of childhood vaccines in regions with suboptimal accessibility (> 2-h). Strategies that address access barriers in the hardest to reach communities are needed to enhance equitable access to immunisation services in Kenya.
Abstract. The orthography of many resource-scarce languages includes diacritically marked characters. Falling outside the scope of the standard Latin encoding, these characters are often represented in digital language resources as their unmarked equivalents. This renders corpus compilation more difficult, as these languages typically do not have the benefit of large electronic dictionaries to perform diacritic restoration. This paper describes experiments with a machine learning approach that is able to automatically restore diacritics on the basis of local graphemic context. We apply the method to the African languages of Cilubà, Gĩkũyũ, Kĩkamba, Maa, Sesotho sa Leboa, Tshivenda and Yoruba and contrast it with experiments on Czech, Dutch, French, German and Romanian, as well as Vietnamese and Chinese Pinyin.
Droughts, with their increasing frequency of occurrence, continue to negatively affect livelihoods and elements at risk. For example, the 2011 in drought in east Africa has caused massive losses document to have cost the Kenyan economy over $12bn. With the foregoing, the demand for ex-ante drought monitoring systems is ever-increasing. The study uses 10 precipitation and vegetation variables that are lagged over 1, 2 and 3-month time-steps to predict drought situations. In the model space search for the most predictive artificial neural network (ANN) model, as opposed to the traditional greedy search for the most predictive variables, we use the General Additive Model (GAM) approach. Together with a set of assumptions, we thereby reduce the cardinality of the space of models. Even though we build a total of 102 GAM models, only 21 have R 2 greater than 0.7 and are thus subjected to the ANN process. The ANN process itself uses the brute-force approach that automatically partitions the training data into 10 sub-samples, builds the ANN models in these samples and evaluates their performance using multiple metrics. The results show the superiority of 1-month lag of the variables as compared to longer time lags of 2 and 3 months. The champion ANN model recorded an R 2 of 0.78 in model testing using the out-of-sample data. This illustrates its ability to be a good predictor of drought situations 1-month ahead. Investigated as a classifier, the champion has a modest accuracy of 66% and a multi-class area under the ROC curve (AUROC) of 89.99%
Abstract. In this paper we present experiments with data-driven part-of-speech taggers trained and evaluated on the annotated Helsinki Corpus of Swahili. Using four of the current state-of-the-art data-driven taggers, TnT, MBT, SVMTool and MXPOST, we observe the latter as being the most accurate tagger for the Kiswahili dataset.We further improve on the performance of the individual taggers by combining them into a committee of taggers. We observe that the more naive combination methods, like the novel plural voting approach, outperform more elaborate schemes like cascaded classifiers and weighted voting. This paper is the first publication to present experiments on data-driven part-of-speech tagging for Kiswahili and Bantu languages in general.
In Africa, where we have enormous and varied challenges in accessing higher education, there is need for relevant and customized content that is specific to our needs and challenges. Most of the models that exist to address these challenges have their limitations in terms of flexibility, time and space constraints and hence the need to address the mitigating factors. A blend of different types of information and communication technologies can be used in innovative ways in order to resolve some of these limitations. However, the same technologies brings about other challenges such as the costs that are associated and change of attitude and training on the part of the e-content developers. These challenges must be addressed for successful introduction of the same in an educational setup. In this paper, electronic learning is proposed as one of the main ways of overcoming some of the key challenges in accessing education. We argue that electronic learning models should be sensitive to the level of availability of infrastructure, technical support, and clear policy on implementation, evaluation and curriculum reorientation. We propose an e-learning implementation model that can be used by educational institutions in introducing e-learning technologies to their staff and students. The model is a modification of Rogers'model of diffusion of innovation in organizations and has been developed from experiences and experiments conducted over a period of three years at the University of Nairobi. The steps involved in the proposed model are described and for each step factors that meliorate the situation are identified and put into perspective. System flowcharts have been developed and used to visualize the processes and the interrelatedness of the steps. We have contextualized the model to suit various parametric values that are dependent on cost, level of infrastructural support and staff motivation and commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.