The JetCutter technology originally developed for high-throughput encapsulation of particles and substances into small beads was applied in this study for the entrapment of mammalian cells in alginate beads. In contrast to other established techniques such as the air jet droplet generation or laminar jet break-up, the JetCutter is capable of working with highly viscous fluids necessary for the production of stable beads based on hydrogels. A 1.5% (w/v) sodium alginate solution containing 2.0 x 106 murine fibroblasts/ml was processed under good manufacturing practice (GMP) conditions to beads with a mean diameter of 320 microm. The production capacity of the JetCutter technology was 5200 beads/s or to approximately 330 ml bead suspension per h. Beads were coated with poly-L-lysine and with an additional alginate layer to produce hollow microcapsules containing living cells. The influence of this method of encapsulation on the cell viability and morphology was investigated by light microscopic techniques. Encapsulated cells showed unchanged rates of proliferation and preserved morphology. They were able to survive in culture for extended periods of time. In conclusion, the JetCutter technology seems to be well suitable for alginate bead encapsulation of living mammalian cells.
The JetCutter is a new, simple and efficient technology for the high throughput encapsulation of various materials inside spherical beads. Monodisperse beads in the particle size range from approximately 0.2 mm up to several millimeters can be prepared at high throughput rates with the JetCutter. The generation of beads is not limited by the fluid viscosity. Thus, also highly viscous fluids even with high loadings of solids, can be processed, which leads to an improved stability of the resulting beads. The JetCutter technology is available in different scales and corresponding throughputs ranging from lab-scale devices (liters per day) up to large scale installations for industrial production purposes (tons per day). The application of the JetCutter for industrial purposes has been well established by geniaLab®, which currently produces more than 40 tons/year of small hydrogel beads
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.