This work demonstrated a sensitive, selective, and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitation of sumatriptan in human plasma samples. Terazosin was used as an internal standard to minimize the variability during sample processing and detection. Sample cleanup prior to chromatographic analysis was accomplished by liquid-liquid extraction (LLE) with tert-butyl methyl ether (t-BME). The separation was performed on a reversed-phase Symmetry® C18 column (150 × 4.6 mm i.d., 5 µm) under a gradient mode, using a 0.2% formic acid aqueous solution and acetonitrile at a flow rate of 0.5 mL/min. Sumatriptan (m/z 296.26→251.05) and terazosin (m/z 388.10→290.25) were quantified using a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) under the positive ion mode. The method was fully validated following US-FDA and EMA guidelines. The LC-MS/MS assay had a calibration range of 0.5–50.0 ng/mL. The assay was precise and accurate with a between-run precision of <9.51%, and between-run accuracy between −7.27 to 8.30%. The developed method was subsequently applied in the determination of plasma concentration-time profile of a sumatriptan 50-mg tablet following oral administration in healthy volunteers.
A fast and simple sample cleanup approach for levocetirizine in human was developed using protein precipitation coupled with LC-MS-MS. Samples were treated with 6% trichloroacetic acid in water prior to LC-MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of acetonitrile and 10 mM ammonium formate pH 3.5 (80:20, v/v) at a flow rate of 1.0 mL/min. The run time was 3.5 min. Mass parameters were optimized to monitor transitions at m/z [M+H] + 389.0→201.0 for levocetirizine and m/z [M+H] + 375.3→201.0 for hydroxyzine as internal standard. The lower limit of quantification and the dynamic range were 1.00 and 1.00-500 ng/mL, respectively. Linearity was good for intraday and interday validations (r 2 ≥ 0.995). The mean recoveries were 59 and 69% for levocetirizine and hydroxyzine, respectively. Matrix effect was acceptable with %CV < 15. Hemolytic effect was negligible. Levocetirizine was stable in human plasma for 27 h at room temperature (25°C), for 16 weeks frozen at −70°C, 4 weeks frozen at −20°C, for 24 h in an autosampler at 15°C and for three freeze/thaw cycles. The validated method was applied in a pharmacokinetic study to determine the concentration of levocetirizine in plasma samples. The study provides a fast and simple bioanalytical method for routine analysis and may be particularly useful for bioequivalence studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.