The method was found to be simple, accurate and precise and is recommended for routine quality control analysis of turmeric extracts containing the three curcuminoid compounds as the main principles in the herb.
A novel series of succinyl derivatives of three curcuminoids were synthesized as potential prodrugs. Symmetrical (curcumin and bisdesmethoxycurcumin) and unsymmetrical (desmethoxycurcumin) curcuminoids were prepared through aldol condensation of 2,4-pentanedione with different benzaldehydes. Esterification of these compounds with a methyl or ethyl ester of succinyl chloride gave the corresponding succinate prodrugs in excellent yields. Anticolon cancer activity of the compounds was evaluated using Caco-2 cells. The succinate prodrugs had IC 50 values in the 1.8-9.6 μM range, compared to IC 50 values of 3.3-4.9 μM for the parent compounds. Curcumin diethyl disuccinate exhibited the highest potency and was chosen for stability studies. Hydrolysis of this compound in phosphate buffer at pH 7.4 and in human plasma followed pseudo first-order kinetics. In phosphate buffer, the k obs and t 1/2 for hydrolysis indicated that the compound was much more stable than curcumin. In human plasma, this compound was
OPEN ACCESSMolecules 2011, 16 1889 able to release curcumin, therefore our results suggest that succinate prodrugs of curcuminoids are stable in phosphate buffer, release the parent curcumin derivatives readily in human plasma, and show anti-colon cancer activity.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N-phenylpropanamide. 1-(2-Phenylethyl)-1,2,3,6-tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS(3)) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium-labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions.
In this work, a curcumin-diglutaric acid (CurDG) prodrug was synthesized by conjugation of curcumin with glutaric acid via an ester linkage. The water solubility, partition coefficient, release characteristics, and antinociceptive activity of CurDG were compared to those of curcumin. The aqueous solubility of CurDG (7.48 μg/mL) is significantly greater than that of curcumin (0.068 μg/mL). A study in human plasma showed that the CurDG completely releases curcumin within 2 h, suggesting the ability of CurDG to serve as a prodrug of curcumin. A hot plate test in mice showed the highest antinociceptive effect dose of curcumin at 200 mg/kg p.o., whereas CurDG showed the same effect at an effective dose of 100 mg/kg p.o., indicating that CurDG significantly enhanced the antinociceptive effect compared to curcumin. The enhanced antinociceptive effect of CurDG may be due to improved water solubility and increased oral bioavailability compared to curcumin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.