Asymmetrical (one-sided) application of penetrating water-soluble polymers, polyethylene glycols (PEGs), to a well-defined channel formed by Staphylococcus aureus alpha-toxin is shown to probe channel pore geometry in more detail than their symmetrical (two-sided) application. Polymers added to the cis side of the planar lipid membrane (the side of protein addition) affect channel conductance differently than polymers added to the trans side. Because a satisfactory theory quantitatively describing PEG partitioning into a channel pore does not exist, we apply the simple empirical rules proposed previously (, J. Membr. Biol. 161:83-92) to gauge the size of pore openings as well as the size and position of constrictions along the pore axis. We estimate the radii of the two openings of the channel to be practically identical and equal to 1. 2-1.3 nm. Two apparent constrictions with radii of approximately 0. 9 nm and approximately 0.6-0.7 nm are inferred to be present in the channel lumen, the larger one being closer to the cis side. These structural findings agree well with crystallographic data on the channel structure (, Science. 274:1859-1866) and verify the practicality of polymer probing. The general features of PEG partitioning are examined using available theoretical considerations, assuming there is no attraction between PEG and the channel lumen. It is shown that the sharp dependence of the partition coefficient on polymer molecular weight found under both symmetrical and asymmetrical polymer application can be rationalized within a "hard sphere nonideal solution model." This finding is rather surprising because PEG forms highly flexible coils in water with a Kuhn length of only several Angstroms.
The maxi-anion channels (MACs) are expressed in cells from mammals to amphibians with ~60% exhibiting a phenotype called Maxi-Cl. Maxi-Cl serves as the most efficient pathway for regulated fluxes of inorganic and organic anions including ATP However, its molecular entity has long been elusive. By subjecting proteins isolated from bleb membranes rich in Maxi-Cl activity to LC-MS/MS combined with targeted siRNA screening, CRISPR/Cas9-mediated knockout, and heterologous overexpression, we identified the organic anion transporter SLCO2A1, known as a prostaglandin transporter (PGT), as a key component of Maxi-Cl. Recombinant SLCO2A1 exhibited Maxi-Cl activity in reconstituted proteoliposomes. When SLCO2A1, but not its two disease-causing mutants, was heterologously expressed in cells which lack endogenous SLCO2A1 expression and Maxi-Cl activity, Maxi-Cl currents became activated. The charge-neutralized mutant became weakly cation-selective with exhibiting a smaller single-channel conductance. silencing and respectively, suppressed the release of ATP from swollen C127 cells and from Langendorff-perfused mouse hearts subjected to ischemia-reperfusion. These findings indicate that SLCO2A1 is an essential core component of the ATP-conductive Maxi-Cl channel.
Nanometer-scale proteinaceous pores are the basis of ion and macromolecular transport in cells and organelles. Recent studies suggest that ion channels and synthetic nanopores may prove useful in biotechnological applications. To better understand the structure-function relationship of nanopores, we are studying the ion-conducting properties of channels formed by wild-type and genetically engineered versions of Staphylococcus aureus alpha-hemolysin (alphaHL) reconstituted into planar lipid bilayer membranes. Specifically, we measured the ion selectivities and current-voltage relationships of channels formed with 24 different alphaHL point cysteine mutants before and after derivatizing the cysteines with positively and negatively charged sulfhydryl-specific reagents. Novel negative charges convert the selectivity of the channel from weakly anionic to strongly cationic, and new positive charges increase the anionic selectivity. However, the extent of these changes depends on the channel radius at the position of the novel charge (predominantly affects ion selectivity) or on the location of these charges along the longitudinal axis of the channel (mainly alters the conductance-voltage curve). The results suggest that the net charge of the pore wall is responsible for cation-anion selectivity of the alphaHL channel and that the charge at the pore entrances is the main factor that determines the shape of the conductance-voltage curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.