Unmanned aerial systems (UAS) have already proven useful in fields and disciplines such as agriculture, forestry, or environmental mapping, and they have also found application during natural and nuclear disasters. In many cases, the environment is inaccessible or dangerous for a human being, meaning that the widely used technique of aerial imagery georeferencing via ground control points cannot be employed. The present paper introduces a custom-built multi-sensor system for direct georeferencing, a concept that enables georeferencing to be performed without an access to the mapping area and ensures centimetre-level object accuracy. The proposed system comprises leading navigation system technologies in the weight category of micro and light UASs. A highly accurate global navigation satellite system receiver integrating the real time kinematic technology supports an inertial navigation system where data from various sensors are fused. Special attention is paid to the time synchronisation of all sensors, and a method for the field calibration of the system is designed. The multi-sensor system is completely independent of the used UAS.The authors also discuss the verification of the proposed system's performance on a real mission. To make the results credible, a high number of test points are used, with both the direct and the indirect georeferencing techniques subjected to comparison, together with different calibration methods. The achieved spatial object accuracy (about 4 cm RMSE) is sufficient for most applications.
This article discusses the highly autonomous robotic search and localization of radiation sources in outdoor environments. The cooperation between a human operator, an unmanned aerial vehicle, and an unmanned ground vehicle is used to render the given mission highly effective, in accordance with the idea that the search for potential radiation sources should be fast, precise, and reliable. Each of the components assumes its own role in the mission; the unmanned aerial vehicle (in our case, a multirotor) is responsible for fast data acquisition to create an accurate orthophoto and terrain map of the zone of interest. Aerial imagery is georeferenced directly, using an onboard sensor system, and no ground markers are required. The unmanned aerial vehicle can also perform rough radiation measurement, if necessary. Since the map contains three-dimensional information about the environment, algorithms to compute the spatial gradient, which represents the rideability, can be designed. Based on the primary aerial map, the human operator defines the area of interest to be examined by the applied unmanned ground vehicle carrying highly sensitive gamma-radiation probe/probes. As the actual survey typically embodies the most time-consuming problem within the mission, major emphasis is put on optimizing the unmanned ground vehicle trajectory planning; however, the dual-probe (differential) approach to facilitate directional sensitivity also finds use in the given context. The unmanned ground vehicle path planning from the pre-mission position to the center of the area of interest is carried out in the automated mode, similarly to the previously mentioned steps. Although the human operator remains indispensable, most of the tasks are performed autonomously, thus substantially reducing the load on the operator to enable them to focus on other actions during the search mission. Although gamma radiation is used as the demonstrator, most of the proposed algorithms and tasks are applicable on a markedly wider basis, including, for example, chemical, biological, radiological, and nuclear missions and environmental measurement tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.