Marine sponges are frequently inhabited by a wide range of associated invertebrates, including caridean shrimps. Symbiotic shrimps are often considered to be commensals; however, in most cases, the relationship with sponge hosts remains unclear. Here we demonstrate that sponge-inhabiting shrimps are often parasites adapted to consumption of sponge tissues. First, we provide detailed examination of morphology and stomach contents of Typton carneus (Decapoda: Palaemonidae: Pontoniinae), a West Atlantic tropical shrimp living in fire sponges of the genus Tedania. Remarkable shear-like claws of T. carneus show evidence of intensive shearing, likely the result of crushing siliceous sponge spicules. Examination of stomach contents revealed that the host sponge tissue is a major source of food for T. carneus. A parasitic mode of life is also reflected in adaptations of mouth appendages, in the reproduction strategy, and in apparent sequestration of host pigments by shrimp. Consistent results were obtained also for congeneric species T. distinctus (Western Atlantic) and T. spongicola (Mediterranean). The distribution of shrimps among sponge hosts (mostly solitary individuals or heterosexual pairs) suggests that Typton shrimps actively prevent colonisation of their sponge by additional conspecifics, thus protecting their resource and reducing the damage to the hosts. We also demonstrate feeding on host tissues by sponge-associated shrimps of the genera Onycocaris, Periclimenaeus, and Thaumastocaris (Pontoniinae) and Synalpheus (Alpheidae). The parasitic mode of life appears to be widely distributed among sponge-inhabiting shrimps. However, it is possible that under some circumstances, the shrimps provide a service to the host sponge by preventing a penetration by potentially more damaging associated animals. The overall nature of interspecific shrimp-sponge relationships thus warrants further investigation.
The occurrence of members of the highly diverse Daphnia longispina complex in Southern and Central Asian high-mountain lakes has been recognized for more than a century. Until now, however, no molecular data have been available for these populations inhabiting the ''Roof of the World.'' Here, we present the first identification for D. gr. longispina from that region based on a molecular phylogeny. Our findings show that alpine lakes in the Pamir and Himalaya mountains host populations of widespread species of the complex, for which these are the highest known localities. A spineless morph from the Himalaya region, previously labeled as D. longispina var.aspina, was clustering tightly with D. dentifera, while a population from the Pamir mountain range was grouped with D. longispina. In addition, we analyzed ecological data available for lakes in the Khumbu region (Himalaya) to investigate ecological preferences of non-pigmented D. gr. longispina. The identified factors can at least partly be related to avoidance of high UV conditions by this species. We conclude that the widespread species D. dentifera and D. longispina also colonized the Asian high-mountain lakes, and identify the need for further research to trace the possible effect of rapid environmental changes in this region on the diversity and ecology of high-altitude Daphnia populations.
Cladocerans of the genus Daphnia show different morphological adaptations against invertebrate predation. Among those, the formation of neckteeth has attracted substantial attention. Morphotypes exhibiting neckteeth better resist predation from larvae of phantom midges Chaoborus (Diptera). These morphological structures are known from several species of the Daphnia longispina and D. pulex complexes; recently they have also been reported in the D. curvirostris complex, within which they are well documented from the Far East species D. sinevi and from Central European D. hrbaceki. Much scarcer are indications of the formation of these structures in the widespread species D. curvirostris. Careful inspection of samples from pools with Chaoborus larvae nevertheless revealed that a small necktooth in the first few instars of D. curvirostris is not uncommon, but probably has been mostly overlooked in the past. Occasionally, even adult D. curvirostris males may carry this feature. We provide documentation, particularly by scanning electron micrographs, of neckteeth in field-collected D. curvirostris, and in juvenile individuals of its sister species D. hrbaceki. In addition, we tested the response of three clones each of D. curvirostris and D. hrbaceki to Chaoborus kairomones in laboratory experiments. Two clones of the former species and all three of the latter responded to this predator cue with neckteeth formation. First-instar juveniles of D. hrbaceki also occasionally carried neckteeth in control treatments without Chaoborus kairomones, but second and third instars did not. We also observed strong interclonal variation in neonate length in the presence of kairomones in this species. We provide a summary table listing all Daphnia species presently known to exhibit neckteeth, and propose that the ability to form these structures may be more widespread among common Daphnia species than previously assumed
Several studies have suggested that aquatic microcrustaceans are relatively efficient dispersers in a variety of landscapes, whereas others have indicated dispersal limitation at large spatial scales or under specific circumstances. Based on a survey of a set of recently created ponds in an area of approximately 18×25 km, we found multiple indications of dispersal limitation affecting the community assembly of microcrustacean communities. Spatial patterns in the community composition were better explained by the geomorphological structure of the landscape than by mere geographic distances. This suggests that ridges separating the network of valleys act as dispersal barriers, and as such may channel the dispersal routes of the studied taxa and, likely, of their animal vectors as well. Dispersal limitation was further supported by a strong positive relationship between species richness and the abundance of neighbouring water bodies, suggesting that isolation affects colonization rates. Finally, the apparent dispersal limitation of microcrustaceans is further corroborated by the observation of low colonization rates in newly dug experimental ponds in the study area.
Although systematics of the cladoceran genus Daphnia (Cladocera: Daphniidae) has been intensively investigated for decades using both morphological and genetic approaches, new lineages are being discovered on all continents, including in well-studied regions. Among Holarctic daphnids, Daphnia curvirostris Eylmann, 1887 held an interesting position, sharing some morphological characters of both the D. pulex and D. longispina groups. Recently, additional species of the D. curvirostris complex have been discovered in the Eastern Palaearctic. Here, we describe a new species in this complex from Central Europe, D. hrbaceki sp. nov. It was discovered in small, newly created fishless pools in the Czech Republic, and an additional sample of apparently the same taxon was collected in 1951 in Slovakia. D. hrbaceki is the closest yet known relative of D. curvirostris, but remains genetically divergent from all members of the complex (based on the sequences of three mitochondrial genes: 12S, COI, and ND2). In general, adult females of this species are morphologically very similar to D. curvirostris. Unlike the latter species, D. hrbaceki may develop a specific hump-shaped dorsal outline of the carapace, presumably an inducible defence against invertebrate predators. Juveniles of the new species occasionally form neckteeth, which may also be retained in adult individuals. The species also shows substantial variation in the size of spines in the middle pecten of the postabdominal claw, similarly as in the Japanese member of the species complex, D. tanakai Ishida, Kotov & Taylor, 2006. This variable character of spine size in the postabdominal middle pecten (a transition from the pulex to the longispina group character), as well as a bent and heavily setulated terminal seta on the male 2nd endopodite (considered as the pulex group character), are typical for the new species. D. hrbaceki also differs from D. curvirostris as well as other members of the complex in the ephippial surface ultrastructure. Our study demonstrates the utility of such ultrastructural characters in Daphnia taxonomical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.