Newly synthesized zinc phthalocyanine bearing sixteen quaternized imidazolyl moieties on the periphery displays high water-solubility, lack of aggregation and high singlet oxygen quantum yield in water (ΦΔ > 0.33). The in vitro tests indicated excellent anticancer photodynamic activity (EC50 = 36.7 nM) and low dark toxicity to non-cancerous cells (TC50 = 395 μM).
A series of octasubstituted zinc(II) tetrapyrazinoporphyrazines (TPyzPz), aza-analogues of phthalocyanines, differing in the number of peripheral N,N-diethylamino (n = 0-8) and tert-butylsulfanyl substituents (m = 8-n) has been synthesized. All possible congeners were characterized including adjacent and opposite isomers. Steady-state (UV-vis, fluorescence) and time-resolved (fluorescence, femtosecond transient absorption) spectroscopies, redox and photochemical (singlet oxygen formation) properties were investigated and compared. The peripheral tertiary amino substituents (donor) induce a new competitive relaxation pathway to fluorescence and intersystem crossing due to the mixing of the first excited state S(1) of the TPyzPz macrocycle with a nearby intramolecular charge transfer (ICT) state. The fluorescence quantum yield and fluorescence lifetime of 6Zn bearing one N,N-diethylamino substituent (n = 1, m = 7) decreased with increasing solvent polarity, while the same observables of 5Zn with no donor centre (n = 0, m = 8) were not affected. Protonation of the N,N-diethylamino substituent in 6Zn led to a strong increase of the fluorescence intensity. The cyclic voltammetry data, the steady-state and time-resolved emission and transient absorption studies revealed strong electronic coupling between the TPyzPz moiety and N,N-diethylamino substituents. ICT is an extremely rapid process occurring with a time constant of 10 ps and 7 ps in 6Zn (n = 1, m = 7) and 11Zn (n = 8, m = 0) in pyridine, respectively. The ICT efficiency decreased in non-polar solvents. The presence of two N,N-diethylamino substituents in 7Zn (n = 2, m = 6) considerably quenched the S(1) states in pyridine (polar, coordinating), toluene (non-polar, non-coordinating) and toluene-1% pyridine (v/v) (non-polar, coordinating). The photophysical properties of compounds with more donor substituents on the periphery (n > 2, m < 6) were similar to those of 7Zn.
Magnesium(II), zinc(II), and metal-free phthalocyanines (Pcs) and azaphthalocyanines (AzaPcs) containing alkylsulfanyl, aryloxy, and dialkylamino peripheral substituents have been synthesized. The complexation of magnesium(II) by metal-free Pcs and AzaPcs has been studied in detail to determine the optimal reaction conditions necessary to ensure a complete conversion. Photophysical and photochemical measurements in tetrahydrofuran showed that magnesium(II) AzaPcs with aryloxy and alkylsulfanyl substituents have excellent fluorescent properties (Φ(F) up to 0.73) and that the corresponding zinc(II) Pcs are efficient singlet oxygen producers (Φ(Δ) up to 0.68). The presence of dialkylamino substituents causes intramolecular charge transfer within the molecule that competes with fluorescence and singlet oxygen formation. Alkylsulfanyl MgAzaPc and ZnAzaPc were the most photostable compounds among the series of studied derivatives. In addition, high molar absorption coefficients (ε ∼ 300,000 M(-1) cm(-1)), absorption (λ(max) ∼ 650 nm), and emission (λ(em) ∼ 660 nm, high Φ(F)) in the red region suggest that these molecules are potential fluorescent probes that are superior to the commercial red cyanine dye Cy5. MgAzaPc, when incorporated into lipidic bilayers of liposomes, maintains excellent fluorescence properties (Φ(F) = 0.64). Water-soluble MgAzaPc with quaternary ammonium peripheral substituents retained a high fluorescence quantum yield even in water (Φ(F) = 0.25). The described properties show that magnesium(II) AzaPcs are excellent red-emitting fluorophores with potential applications as fluorescent probes in sensing or in vitro imaging applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.