IntroductionMalignant pleural mesothelioma (MPM) is an incurable malignant disease, which results from chronic exposition to asbestos in at least 70% of the cases. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts as well as on particular cancer types. Because of its expression on the cell surface, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by retroviral transfer of chimeric antigen receptors (CAR) against tumor-associated antigens (TAA) and therefore represent a therapeutic strategy of adoptive immunotherapy.MethodsTo evaluate FAP expression immunohistochemistry was performed in tumor tissue from MPM patients. CD8+ human T cells were retrovirally transduced with an anti-FAP-F19-∆CD28/CD3ζ-CAR. T cell function was evaluated in vitro by cytokine release and cytotoxicity assays. In vivo function was tested with an intraperitoneal xenograft tumor model in immunodeficient mice.ResultsFAP was found to be expressed in all subtypes of MPM. Additionally, FAP expression was evaluated in healthy adult tissue samples and was only detected in specific areas in the pancreas, the placenta and very weakly for cervix and uterus. Expression of the anti-FAP-F19-∆CD28/CD3ζ-CAR in CD8+ T cells resulted in antigen-specific IFNγ release. Additionally, FAP-specific re-directed T cells lysed FAP positive mesothelioma cells and inflammatory fibroblasts in an antigen-specific manner in vitro. Furthermore, FAP-specific re-directed T cells inhibited the growth of FAP positive human tumor cells in the peritoneal cavity of mice and significantly prolonged survival of mice.ConclusionFAP re-directed CD8+ T cells showed antigen-specific functionality in vitro and in vivo. Furthermore, FAP expression was verified in all MPM histotypes. Therefore, our data support performing a phase I clinical trial in which MPM patients are treated with adoptively transferred FAP-specific re-directed T cells.
Exosomes are lipid-bound nanovesicles formed by inward budding of the endosomal membrane and released following fusion of the endosomal limiting membrane with the plasma membrane. We show here that primary leukocytes do not release exosomes unless subjected to potent activation signals, such as cytokine or mitogen stimulation. In particular, high levels of exosomes were released when murine splenic B cells were stimulated via CD40 and the IL-4 receptor. This property was shared by B cells from different anatomic locations, as newly formed, marginal zone and follicular B cells were capable of secreting exosomes upon CD40/IL-4 triggering. B cell exosomes expressed high levels of MHC class I, MHC class II, and CD45RA (B220), as well as components of the BCR complex, namely, surface Ig, CD19, and the tetraspanins CD9 and CD81. Ig on the plasma membrane of primary B cells was targeted to the exosome pathway, demonstrating a link between the BCR and this exocytic pathway. IgD and IgM were the predominant Ig isotypes associated with CD40/IL-4 elicited exosomes, though other isotypes (IgA, IgG1, IgG2a/2b, and IgG3) were also detected. Together, these results suggest that exosome release is not R constitutive activity of B cells, but may be induced following cell: cell signaling.
The cancer-testis antigen NY-ESO-1 is a potential target antigen for immune therapy expressed in a subset of patients with multiple myeloma. We generated chimeric antigen receptors (CARs) recognizing the immunodominant NY-ESO-1 peptide 157-165 in the context of HLA-A*02:01 to re-direct autologous CD8(+) T cells towards NY-ESO-1(+) myeloma cells. These re-directed T cells specifically lysed NY-ESO-1(157-165)/HLA-A*02:01-positive cells and secreted IFNγ. A total of 40% of CCR7(-) re-directed T cells had an effector memory phenotype and 5% a central memory phenotype. Based on CCR7 cell sorting, effector and memory CAR-positive T cells were separated and CCR7(+) memory cells demonstrated after antigen-specific re-stimulation downregulation of CCR7 as sign of differentiation towards effector cells accompanied by an increased secretion of memory signature cytokines such as IL-2. To evaluate NY-ESO-1 as potential target antigen, we screened 78 bone marrow biopsies of multiple myeloma patients where NY-ESO-1 protein was found to be expressed by immunohistochemistry in 9.7% of samples. Adoptively transferred NY-ESO-1-specific re-directed T cells protected mice against challenge with endogenously NY-ESO-1-positive myeloma cells in a xenograft model. In conclusion, re-directed effector- and central memory T cells specifically recognized NY-ESO-1(157-165)/ HLA-A*02:01-positive cells resulting in antigen-specific functionality in vitro and in vivo.
BackgroundAsbestos is the main cause of MPM in industrialized countries. Even since asbestos is banned in most developed countries, the peak wave of MPM incidence is anticipated for the next years due to the long latency of asbestos induced MPM. MPM patients not eligible for surgical procedures like decortication or pleuro-pneumectomie have a median survival of 12 months with palliative chemotherapy. Therefore, new therapeutic approaches are of crucial need in this clinical situation.Methods/designThis is a phase I trial for patients with malignant pleural mesothelioma with pleural effusion testing the safety of a fixed single dose of 1x106 adoptively transferred FAP-specific re-directed T cells given directly in the pleural effusion. Lymphocytes will be taken 21 days before transfer from peripheral blood. CD8 positive T cells will be isolated and re-programmed by retroviral transfer of a chimeric antigen receptor recognizing FAP which serves as target structure in MPM. At day 0 of the protocol, re-directed T cells will be injected in the pleural effusion and patients will be monitored for 48h under intermediate care conditions. AE, SAE, SADR and SUSAR will be monitored for 35 days and evaluated by an independent safety board to define any dose limiting toxicity (DLT). No further patient can be treated before the previous patient passed day 14 after T cell transfer. The protocol will be judged as save when no DLT occurred in the first 3 patients, or 1 DLT in 6 patients. Secondary objectives are feasibility and immune monitoring.DiscussionAdoptive T cell transfer is a new and rapidly expanding branch of immunotherapies focusing on cancer treatment. Recently, objective responses could be observed in patients with chronic lymphatic leukemia treated with adoptively transferred CD19-specific re-directed T cells. The choice of the target antigen determines the possible on-target off-tissue toxicity of such approaches. There are reports of severe toxicity in patients who received T cells intravenously due to unexpected expression of the target antigen (on-target) in other tissues than the tumor (off-tissue). To minimize the risk of on-target off-tissue toxicity and to maximize the on-target anti-tumor effect we propose a clinical protocol with loco-regional administration of re-directed T cells. FAP-specific T cells will be directly injected in the pleural effusion of patients with MPM.Trial registrationClinicalTrials.gov (NCT01722149)
Combination therapy of adoptively transferred redirected T cells and checkpoint inhibitors aims for higher response rates in tumors poorly responsive to immunotherapy like malignant pleural mesothelioma (MPM). Only most recently the issue of an optimally active chimeric antigen receptor (CAR) and the combination with checkpoint inhibitors is starting to be addressed. Fibroblast activation protein (FAP)-specific CARs with different costimulatory domains, including CD28, Δ-CD28 (lacking lck binding moiety), or 4-1BB were established. CAR-T cells were characterized and antitumor efficacy was tested in a humanized mouse model in combination with PD-1 blockade. Finally, the Δ-CD28 CAR was tested clinically in a patient with MPM. All the three CARs demonstrated FAP-specific functionality Gene expression data indicated a distinct activity profile for the Δ-CD28 CAR, including higher expression of genes involved in cell division, glycolysis, fatty acid oxidation, and oxidative phosphorylation. only T cells expressing the Δ-CD28 CAR in combination with PD-1 blockade controlled tumor growth. When injected into the pleural effusion of a patient with MPM, the Δ-CD28 CAR could be detected for up to 21 days and showed functionality. Overall, anti-FAP-Δ-CD28/CD3ζ CAR T cells revealed superior functionality, better tumor control in combination with PD-1 blockade in humanized mice, and persistence up to 21 days in a patient with MPM. Therefore, further clinical investigation of this optimized CAR is warranted..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.